精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.
分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;
(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,
OA
的方向为x轴的正向,|
OA
|为单位长,建立坐标系,可得
BC
BB1
A1C
的坐标,设
n
=(x,y,z)为平面BB1C1C的法向量,则
n
BC
=0
n
BB1
=0
,可解得
n
=(
3
,1,-1),可求cos<
n
A1C
>,即为所求正弦值.
解答:解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,
因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,
所以△AA1B为等边三角形,所以OA1⊥AB,
又因为OC∩OA1=O,所以AB⊥平面OA1C,
又A1C?平面OA1C,故AB⊥A1C;
(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,
所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.
以O为坐标原点,
OA
的方向为x轴的正向,|
OA
|为单位长,建立如图所示的坐标系,
可得A(1,0,0),A1(0,
3
,0),C(0,0,
3
),B(-1,0,0),
BC
=(1,0,
3
),
BB1
=
AA1
=(-1,
3
,0),
A1C
=(0,-
3
3
),
n
=(x,y,z)为平面BB1C1C的法向量,则
n
BC
=0
n
BB1
=0
,即
x+
3
z=0
-x+
3
y=0

可取y=1,可得
n
=(
3
,1,-1),故cos<
n
A1C
>=
n
A1C
|
n
||
A1C
|
=-
10
5

故直线A1C与平面BB1C1C所成角的正弦值为:
10
5
点评:本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案