精英家教网 > 高中数学 > 题目详情

 【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力 

【解析】对于等比数列,通过类比,有等比数列的前项积为,则成等比数列.

练习册系列答案
相关习题

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命题意图】本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

【解析】(Ⅰ) ∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四边形,

∴CF=BD=AD,   连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

科目:高中数学 来源: 题型:

D.

【命题意图】本题考查二元一次不等式(组)表示的平面区域、直线的斜率、三角形面积公式等基础知识,考查数形结合思想,容易题.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题

如图,三棱柱中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。

(I) 证明:平面⊥平面

(Ⅱ)平面分此棱柱为两部分,求这两部分体积的比.

【命题意图】本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴,    又∵,∴,

由题设知,∴=,即,

又∵,   ∴⊥面,    ∵

∴面⊥面

(Ⅱ)设棱锥的体积为=1,由题意得,==

由三棱柱的体积=1,

=1:1,  ∴平面分此棱柱为两部分体积之比为1:1

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

【命题意图】本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.

【解析】(Ⅰ)当日需求量时,利润=85;

当日需求量时,利润

关于的解析式为

(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为

=76.4;

(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为

 

查看答案和解析>>

同步练习册答案