精英家教网 > 高中数学 > 题目详情

【题目】曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是(
A.
B.
C.
D.

【答案】D
【解析】解:根据题意画出图形,如图所示:
由题意可得:直线l过A(2,4),B(﹣2,1),
又曲线 图象为以(0,1)为圆心,2为半径的半圆,
当直线l与半圆相切,C为切点时,圆心到直线l的距离d=r,即 =2,
解得:k=
当直线l过B点时,直线l的斜率为 =
则直线l与半圆有两个不同的交点时,实数k的范围为
故答案为:D
要求的实数k的取值范围即为直线l斜率的取值范围,主要求出斜率的取值范围,方法为:曲线 表示以(0,1)为圆心,2为半径的半圆,在坐标系中画出相应的图形,直线l与半圆有不同的交点,故抓住两个关键点:当直线l与半圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值;当直线l过B点时,由A和B的坐标求出此时直线l的斜率,根据两种情况求出的斜率得出k的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x,y的不等式组 表示的平面区域内存在点P(x0 , y0),满足x0﹣2y0=2,求得m的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= +lnx在[1,+∞)上为增函数,且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上为单调函数,求m的取值范围;
(Ⅲ)设h(x)= ,若在[1,e]上至少存在一个x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosxcos(x﹣ ).
(1)求f( )的值.
(2)求使f(x)< 成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)= (万元).当年产量不小于80千件时,C(x)=51x+ (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足(其中.

(1)求函数的解析式,并判断其奇偶性和单调性;

2)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: + =1(a>b>0)的离心率e= ,过点(0,﹣b),(a,0)的直线与原点的距离为 ,M(x0 , y0)是椭圆上任一点,从原点O向圆M:(x﹣x02+(y﹣y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1 , k2 , 试求k1k2的值.

查看答案和解析>>

同步练习册答案