精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=(n≥2,n∈N*),数列{bn}满足,(n∈N*). (1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由。

(1)证明:因为(n≥2,n∈N*),
所以,当n≥2时,


∴数列是以为首项,1为公差的等差数列。
(2)解:由(1)知,

设函数
f(x)在区间(-∞,)和(,+∞)内为减函数,
又f(3)=-1,f(4)=3,
所以,当n=3时,an取得最小值-1;当n=4时,an取得最大值3。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案