【题目】设函数f(x)=ax+bx+cx , 其中c>a>0,c>b>0,若a,b,c是△ABC的三条边长,则下列结论正确的是( ) ①对任意x∈(﹣∞,1),都有f(x)<0;
②存在x∈R,使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,存在x∈(1,2),使f(x)=0.
A.①②
B.②③
C.①③
D.①②③
【答案】B
【解析】解:在①中,∵a,b,c是△ABC的三条边长,∴a+b>c, ∵c>a>0,c>b>0,∴0< <1,0< <1,
当x∈(﹣∞,1)时,f(x)=ax+bx﹣cx=cx[( )x+( )x﹣1]
>cx( + ﹣1)=cx >0,故①错误.
在②中,令a=2,b=3,c=4,则a.b.c可以构成三角形,
但a2=4,b2=9,c2=16却不能构成三角形,故②正确.
在③中,∵c>a>0,c>b>0,若△ABC为钝角三角形,∴a2+b2﹣c2<0,
∵f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0,
∴根据根的存在性定理可知在区间(1,2)上存在零点,即x∈(1,2),使f(x)=0,故③正确.
故选:B.
【考点精析】本题主要考查了函数的值的相关知识点,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+2x+x﹣1,若f(x2﹣4)<2,则实数x的取值范围是( )
A.(﹣2,2)
B.(2, )
C.(﹣ ,﹣2)
D.(﹣ ,﹣2)∪(2, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱 中,底面 是边长为2的等边三角形, 为 的中点.
(1)求证: 平面 ;
(2)若四边形 是正方形,且 , 求直线 与平面 所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱 中, 底面 ,且 为等边三角形, , 为 的中点.
(1)求证:直线 平面 ;
(2)求证:平面 平面 ;
(3)求三棱锥 的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标标系xoy中,已知曲线 (α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线 = ,曲线C3:ρ=2cosθ. (Ⅰ)求曲线C1与C2的交点M的直角坐标;
(Ⅱ)设A,B分别为曲线C2 , C3上的动点,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 . (Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com