精英家教网 > 高中数学 > 题目详情

(本题满分14分)

已知函数,,和直线 .

(1)求的值;

(2)是否存在的值,使直线既是曲线的切线,又是的切线;如果存在,求出k的值;如果不存在,说明理由.

(3)如果对于所有,都有成立,求k的取值范围.

 

【答案】

 

(1)=-2.

(2)

(3)

【解析】解:(1),因为所以=-2.   …………2分

  (2)因为直线恒过点(0,9).先求直线 的切线.

设切点为, …………3分

.∴切线方程为,

将点(0,9)代入得.

时,切线方程为=9, 当时,切线方程为=.

,即有

时,的切线

时, 的切线方程为…………6分

 是公切线,又由

的切线为,当的切线为

,不是公切线, 综上所述 是两曲线的公切线  ……7分

 (3).(1),当,不等式恒成立,.

时,不等式为,……8分

 

时,不等式为 

时,恒成立,则          …………10分

(2)由

时,恒成立,,当时有 

=

为增函数,也为增函数

要使上恒成立,则         …………12分

由上述过程只要考虑,则当=

,在

时有极大值即上的最大值,…………13分

,即而当,

一定成立,综上所述.    …………14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案