精英家教网 > 高中数学 > 题目详情

已知{an}是等差数列,其中a1=1,a3=3,求
(1)数列{an}的公差; 
(2)数列{an}的通项公式an
(3)数列{an}的前n项和Sn

解:(1)因为{an}是等差数列,并且a1=1,a3=3,
所以2d=a3-a1=2,所以d=1,所以数列{an}的公差为1.
(2)由(1)可得:d=1,所以an=a1+(n-1)d=n.
(3)由a1=1,an=n可得
分析:(1)设等差数列{an}的公差为d,根据 a1=1,a3=3.解得d=4.
(2)由(1)从而得到 an=1+(n-1)×1,化简可得结果.
(3)由首项a1=1,第n项 an=n可得 ,运算求得结果.
点评:本题考查等差数列的定义,通项公式,前n项和公式的应用,求出首项a1和公差d的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案