精英家教网 > 高中数学 > 题目详情

正方体ABCD-A1B1C1D1中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1
∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,其中有可能 成立的结论的个数为


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
A
分析:根据题意,分析命题:首先利用点M∈AB1,N∈BC1,M,N可以是这两条直线上的任意的点,取特殊位置,得出②④两个结论可能成立,做出辅助线作MM′⊥A1B1于M′,作NN′⊥B1C1于N′,得到①③两个命题是正确的.
解答:当M为A,N为B,得出④可能成立;
当M为AB1的中点,N为BC1的中点,得出②可能成立;
作MM′⊥A1B1于M′,作NN′⊥B1C1于N′,
易证|MM′|=|NN′|,MM′∥NN′
∴MN∥M′N′,
由此知①③正确.
有可能 成立的结论的个数为4.
故选A.
点评:本题考查正方体的结构特征,考查选择题的特殊解法和判断一个命题是否正确,若是错误的只要用反例来得到错误即可,不用证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案