精英家教网 > 高中数学 > 题目详情
(2013•惠州一模)已知f(x)=lnx,g(x)=
1
3
x3+
1
2
x2+mx+n
,直线l与函数f(x),g(x)的图象都相切于点(1,0).
(1)求直线l的方程及g(x)的解析式;
(2)若h(x)=f(x)-g′(x)(其中g′(x)是g(x)的导函数),求函数h(x)的极大值.
分析:(1)先确定直线l的方程为y=x-1,利用直线l与g(x)的图象相切,且切于点(1,0),建立方程,即可求得g(x)的解析式;
(2)确定函数h(x)的解析式,利用导数求得函数的单调性,即可求函数h(x)的极大值.
解答:解:(1)直线l是函数f(x)=lnx在点(1,0)处的切线,故其斜率k=f′(1)=1,
∴直线l的方程为y=x-1.…(2分)
又因为直线l与g(x)的图象相切,且切于点(1,0),
g(x)=
1
3
x3+
1
2
x2+mx+n
在点(1,0)的导函数值为1.
g(1)=0
g′(1)=1
,∴
m=-1
n=
1
6
,…(4分)
g(x)=
1
3
x3+
1
2
x2-x+
1
6
…(6分)
(2)∵h(x)=f(x)-g′(x)=lnx-x2-x+1(x>0)…(7分)
h′(x)=
1
x
-2x-1=
1-2x2-x
x
=-
(2x-1)(x+1)
x
…(9分)
令h′(x)=0,得x=
1
2
或x=-1(舍)…(10分)
0<x<
1
2
时,h′(x)>0,h(x)递增;当x>
1
2
时,h′(x)<0,h(x)递减…(12分)
因此,当x=
1
2
时,h(x)取得极大值,
∴[h(x)]极大=h(
1
2
)=ln
1
2
+
1
4
…(14分)
点评:本题考查导数知识的运用,考查切线方程,考查函数的单调性与极值,考查学生的计算能力,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州一模)在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(坐标系与参数方程选做题)
若直线l的极坐标方程为ρcos(θ-
π
4
)=3
2
,曲线C:ρ=1上的点到直线l的距离为d,则d的最大值为
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)(几何证明选做题)
如图圆O的直径AB=6,P是AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,则PC=
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)已知向量
a
=(-1,1)
b
=(3,m)
a
∥(
a
+
b
)
,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)若集合A={x|x2-4x-5=0},B={x|x2=1},则A∩B=(  )

查看答案和解析>>

同步练习册答案