精英家教网 > 高中数学 > 题目详情
已知两圆C1:x2+y2-2x=0,C2:(x+1)2+y2=4的圆心分别为C1,C2,P为一个动点,且|PC1|+|PC2|=2
2

(1)求动点P的轨迹M的方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.
(1)两圆的圆心坐标分别为C1(1,0),C2(-1,0),
∵|PC1|+|PC2|=2
2
>2=|C1C2|,
∴根据椭圆的定义可知,动点P的轨迹为以原点为中心,C1(1,0)和C2(-1,0)为焦点,长轴长为2a=2
2
的椭圆,
所以a=
2
,c=1,b=
a2-c2
=
2-1
=1,
∴椭圆的方程为
x2
2
+y2=1
,即动点P的轨迹M的方程为
x2
2
+y2=1

(2)假设存在这样的直线l满足条件,
当直线l的斜率不存在时,易知点A(2,0)在椭圆M的外部,直线l与椭圆M无交点,所以直线l不存在.
当直线l斜率存在时,设斜率为k,则直线l的方程为y=k(x-2),
由方程组
x2
2
+y2=1
y=k(x-2)
得(2k2+1)x2-8k2x+8k2-2=0①,
依题意△=(-8k22-4(2k2+1)(8k2-2)>0,即-2k2+1>0,解得-
2
2
<k<
2
2

当-
2
2
<k<
2
2
时,设交点C(x1,y1),D(x2,y2),CD的中点为N(x0,y0),
方程①的解为x1=
8k2+
4k2+2
x2=
8k2-
4k2+2
,则x0=
x1+x2
2
=
4k2
2k2+1

∴y0=k(x0-2)=k(
4k2
2k2+1
-2)=
-2k
2k2+1

要使|C1C|=|C1D|,必须有C1N⊥l,即kkC1N=-1,
∴k
-2k
2k2+1
-0
4k2
2k2+1
-1
=-1,化简得0=-1,显然不成立;         
所以不存在直线l,使得|C1C|=|C1D|,
综上所述,不存在直线l,使得|C1C|=|C1D|;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知两圆C1:x2+y2+D1x+E1y+3=0和C2:x2+y2+D2x+E2y+3=0都过点A(1,1),则经过两点(D1,E1)、(D2,E2)的直线方程为
x+y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)已知两圆C1:x2+y2-2x=0,C2:(x+1)2+y2=4的圆心分别为C1,C2,P为一个动点,且|PC1|+|PC2|=2
2

(1)求动点P的轨迹M的方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C、D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆C1x2+y2+D1x+E1y-3=0C2x2+y2+D2x+E2y-3=0都过点E(3,4),则经过两点(D1,E1)、(D2,E2)的直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2y-8=0,则以两圆公共弦为直径的圆的方程是
(x+2)2+(y-1)2=5
(x+2)2+(y-1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆C1x2+y2-2x+10y-24=0C2x2+y2+2x+2y-8=0,则它们的公共弦所在的直线方程为
 

查看答案和解析>>

同步练习册答案