【题目】已知函数
,
.
(1)当a=1时,求:①函数
在点P(1,
)处的切线方程;②函数
的单调区间和极值;
(2)若不等式
恒成立,求a的值.
【答案】(1)①切线方程
;②单调递增区间为
,单调递减区间为
,极大值为
,无极小值;(2)1
【解析】
(1)①a=1时,f(x)
,f′(x)
,可得f′(1)=1,又f(1)=0.利用点斜式即可得出f(x)在点P(1,f(1))处的切线方程.
②令f′(x)
0,解得x=e.通过列表可得函数f(x)的单调递区间及其极值.
(2)由题意可得:x>0,由不等式
恒成立,即x﹣1﹣alnx≥0恒成立.令g(x)=x﹣1﹣alnx≥0,g(1)=0,x∈(0,+∞).g′(x)=1
.对a分类讨论,利用导数研究函数的单调性极值与最值即可得出.
(1)①
,所以
,又
,
所以切线方程为
,即
.
②
,得
.
|
|
|
|
| + | 0 | - |
| 递增 | 极大值 | 递减 |
可得函数
的单调递增区间为
,单调递减区间为
,极大值为
,无极小值.
(2)由题意知
,∴不等式
恒成立,
即
恒成立.
设
,则有
.
,
(Ⅰ)若
,则
在
上单调递增,
又
,所以在
上
,不符合;
(Ⅱ)若
,则在
上
,即
单调递增,
又
,所以在
上
,不符合;
(Ⅲ)若
,则在
上
,即
单调递增,在
上
,即
单调递减,
又
,所以
恒成立,符合;
(Ⅳ)若
,则在
上
,即
单调递减,
又
,所以在
上
,不符合.
综上可得
的值为1.
科目:高中数学 来源: 题型:
【题目】进入12月以业,在华北地区连续出现两次重污染天气的严峻形势下,我省坚持保民生,保蓝天,各地严格落实机动车限行等一系列“管控令”,某市交通管理部门为了了解市民对“单双号限行”的态度,随机采访了200名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到如下的
列联表:
赞同限行 | 不赞同限行 | 合计 | |
没有私家车 | 90 | 20 | 110 |
有私家车 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断能否在犯错误的概率不超过
的前提下认为“对限行的态度与是否拥有私家车有关”;
(2)为了了解限行之后是否对交通拥堵、环境染污起到改善作用,从上述调查的不赞同限行的人员中按是否拥有私家车分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人没有私家车的概率.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构通过对某企业今年的生产经营情况的调查,得到每月利润
(单位:万元)与相应月份数
的部分数据如表:
| 1 | 4 | 7 | 12 |
| 229 | 244 | 241 | 196 |
(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述
与
的变化关系,并说明理由,
,
,
;
(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段
进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图如图.
![]()
(1)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;
(2)为分析学生平时的体育活动情况,现从体育成绩在
和
的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
:
的焦点,点
为抛物线
的对称轴与其准线的交点,过
作抛物线
的切线,切点为
,若点
恰好在以
,
为焦点的双曲线上,则双曲线的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是抛物线为
上的一点,以S为圆心,r为半径
做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点.
求抛物线的方程.
求证:直线CD的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右有顶点分别是
、
,上顶点是
,圆
:
的圆心
到直线
的距离是
,且椭圆的右焦点与抛物线
的焦点重合.
(Ⅰ)求椭圆
的方程;
(Ⅱ)平行于
轴的动直线与椭圆和圆在第一象限内的交点分别为
、
,直线
、
与
轴的交点记为
,
.试判断
是否为定值,若是,证明你的结论.若不是,举反例说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com