精英家教网 > 高中数学 > 题目详情
三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“寻找x与y的关系,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是
[-1,+∞)
[-1,+∞)
分析:利用丙的方法,将字母a分离出来,只需研究二次函数在闭区间上的最大值即可.将
y
x
看成整体,转化成关于
y
x
的二次函数,求出
y
x
的范围,即可求出二次函数在闭区间上的最大值.
解答:解:选用丙的方法,∵xy≤ax2+2y2
∴ax2≥xy-2y2,∴a≥
y
x
-2•
y2
x2
=-2(
y
x
-
1
4
)
2
+
1
8

y
x
-2•
y2
x2
=-2(
y
x
-
1
4
)
2
+
1
8

y
x
∈[1,3]

[-2(
y
x
-
1
4
)
2
+
1
8
]
max
=-1,
故答案为[-1,+∞).
点评:本题以不同的思路为载体,考查学生解决问题的能力,考查了函数恒成立的问题,以及参数分离法的运用和转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“不等式两边同除以x2,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三位同学合作学习,对问题“已知不等式xy≤ax2+2y2对于x∈[1,2],y∈[2,3]恒成立,求a的取值范围”提出了各自的解题思路.
甲说:“可视x为变量,y为常量来分析”.
乙说:“寻找x与y的关系,再作分析”.
丙说:“把字母a单独放在一边,再作分析”.
参考上述思路,或自已的其它解法,可求出实数a的取值范围是(  )
A、[-1,6]B、[-1,4)C、[-1,+∞)D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三第五次质量检测文科数学 题型:选择题

三位同学合作学习,对问题“已知不等式对于恒成立,求a的取值范围”提出了各自的解题思路.

甲说:“可视为变量,为常量来分析”.

乙说:“寻找的关系,再作分析”.

丙说:“把字母单独放在一边,再作分析”.

参考上述思路,或自已的其它解法,可求出实数的取值范围是

A.           B.        C.       D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三第三次考试理科数学卷 题型:填空题

三位同学合作学习,对问题“已知不等式对于恒成立,求的取值范围”提出了各自的解题思路.

    甲说:“可视为变量,为常量来分析”.

 乙说:“不等式两边同除以2,再作分析”.

    丙说:“把字母单独放在一边,再作分析”.

参考上述思路,或自已的其它解法,可求出实数的取值范围是        

 

查看答案和解析>>

同步练习册答案