精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系 中,直线 的参数方程为 为参数).它与曲线 交于 两点.
(1)求 的长;
(2)在以 为极点, 轴的正半轴为极轴建立极坐标系,设点 的极坐标为 ,求点 到线段 中点 的距离.

【答案】
(1)解:把直线的参数方程对应的坐标代入曲线方程并化简得

对应的参数分别为 ,则

所以


(2)解:易得点 在平面直角坐标系下的坐标为

根据中点坐标的性质可得 中点 对应的参数为

所以由 的几何意义可得点 的距离为


【解析】(1)由已知的条件把参数方程代入到曲线的方程化简可得关于t的方程,借助韦达定理找出 t1 与 t2 的关系式代入到弦长公式中求解即可。(2)由题意利用极坐标和直角坐标的互化关系,得出点 P 在平面直角坐标系下的坐标并根据中点坐标得出点M对应的参数值,借助两点间的结论公式求出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求证:f(x)≥2;
(2)若不等式f(x)≥ 对任意非零实数b恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.
(1)求三棱柱ABC﹣A1B1C1的体积;
(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于茎叶图的说法,结论错误的一个是( )

A. 甲的极差是29 B. 甲的中位数是25

C. 乙的众数是21 D. 甲的平均数比乙的大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .
(1)求函数 上的单调递增区间;
(2)设 的三个角 所对的边分别为 ,且 成公差大于零的等差数列,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F2 , P分别为双曲线 的右焦点与右支上的一点,O为坐标原点,若2 |,且 ,则该双曲线的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.
(1)试求选出3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是 ,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是(
A.(﹣∞,﹣2)
B.[﹣2,+∞)
C.[﹣2,2]
D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资. (I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:

雕刻量n

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.

查看答案和解析>>

同步练习册答案