【题目】五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.
(1)试求选出3种商品中至少有一种是家电的概率;
(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为 6n元的奖金.假设顾客每次抽奖中奖的概率都是 ,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利?
【答案】
(1)解:设选出的3种商品中至少有一种是家电为事件A,
从2种服装、3种家电、4种日用品中,选出3种商品,一共有 种不同的选法,
选出的3种商品中,没有家电的选法有 种,
所以选出的3种商品中至少有一种是家电的概率为
;
(2)解:设顾客三次抽奖所获得的奖金总额为随机变量ξ,
其所有可能的取值为0,n,3n,6n;(单元:元)
ξ=0表示顾客在三次抽奖都没有获奖,
所以 ,
同理 ;
;
;
顾客在三次抽奖中所获得的奖金总额的期望值是
,
由 ,解得n≤64,
所以n最高定为64元,才能使促销方案对商场有利.
【解析】(1)设选出的3种商品中至少有一种是家电为事件A,利用对立事件的概率求出A的概率值;(2)设顾客三次抽奖所获得的奖金总额为随机变量ξ,写出ξ的所有可能取值,求出对应的概率值,计算数学期望,利用数学期望值列不等式,求出奖金数额n的最高值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax有极值1,这里e是自然对数的底数.
(1)求实数a的值,并确定1是极大值还是极小值;
(2)若当x∈[0,+∞)时,f(x)≥mxln(x+1)+1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系 中,直线 的参数方程为 为参数).它与曲线 交于 两点.
(1)求 的长;
(2)在以 为极点, 轴的正半轴为极轴建立极坐标系,设点 的极坐标为 ,求点 到线段 中点 的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若是从0,1,2,3,4五个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1 , x2 , 则e e 的最大值为( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣3)ex+ax,a∈R. (Ⅰ)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a∈[0,e)时,设函数f(x)在(1,+∞)上的最小值为g(a),求函数g(a)的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com