精英家教网 > 高中数学 > 题目详情
2.已知x,y的取值如表:
x0134
y2.24.34.86.7
从散点图可以看出x与y线性相关,且回归方程为$\widehat{y}$=0.95x+a,则a=(  )
A.3.2B.3.0C.2.8D.2.6

分析 由线性回归直线方程中系数的求法,($\overline{x}$,$\overline{y}$)点在回归直线上,满足回归直线的方程,我们根据已知表中数据计算出,再将点的坐标代入回归直线方程,即可求出对应的a值.

解答 解:∵($\overline{x}$,$\overline{y}$)点在回归直线上,
计算得$\overline{x}$=$\frac{1}{4}$(0+1+3+4)=2,$\overline{y}$=$\frac{1}{4}$(2.2+4.3+4.8+6.7)=4.5,
∴回归方程过点(2,4.5)
代入得4.5=0.95×2+a
∴a=2.6;
故选:D.

点评 本题就是考查回归方程过定点,考查线性回归方程,考查待定系数法求字母系数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知x1<x2且函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2-x+1的极大值为f(x1)、极小值为f(x2),又x1,x2中至少有一个数在区间(1,2)内,则a-b的取值范围为(  )
A.(-2,+∞)B.(-∞,-2)C.(-∞,2)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\vec m$=($\sqrt{3}$sinx,2cosx),$\vec n$=(2cosx,-cosx),函数f(x)=$\overrightarrow{m}$.$\overrightarrow{n}$-1
(1)求函数f(x)的最小正周期和对称轴方程;
(2)设三角形ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若|$\overrightarrow{OA}$=|$\overrightarrow{OB}$|=3,∠AOB=60°,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.5人排成一排,甲只能排在第一个或第二两个位置,乙只能排在第二或第三两个位置,不同的排法共有(  )
A.12种B.16种C.18种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.质点运动规律s=t2+3,则在时间(3,3+△x)中,质点的平均速度等于(  )
A.6+△xB.6+△x+$\frac{9}{△x}$C.3+△xD.9+△x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和Sn满足a1+a3=0,S5=-5.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中$|AC|=1,|AB|=2,∠BAC=\frac{π}{3}$,$\overrightarrow{BC}$=3$\overrightarrow{DC}$,D,则$\overrightarrow{AD}•\overrightarrow{BC}$=(  )
A.-1B.$-\frac{2}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在(x-2)2(2x+1)3的展开式中,含x2项的系数是25.

查看答案和解析>>

同步练习册答案