精英家教网 > 高中数学 > 题目详情

数列{an}是公比为2的等比数列,且a1+a4+a7=10,那么a3+a6+a9值是


  1. A.
    10
  2. B.
    20
  3. C.
    30
  4. D.
    40
D
分析:根据等比数列的通项公式可得a3+a6+a9=q2(a1+a4+a7)再结合题中条件可得答案.
解答:由题意可得:a3+a6+a9=q2(a1+a4+a7)=4×10=40.
故选D.
点评:解决此类问题的关键是熟练掌握等比数列的性质与等比数列的通项公式,并且要加以正确的计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城三模)已知数列{an}的首项为1,p(x)=a1
C
0
n
(1-x)n+a2
C
1
n
x(1-x)n-1+a3
C
2
n
x2(1-x)n-2+…+an
C
n-1
n
xn-1(1-x)+an+1
C
n
n
xn

(1)若数列{an}是公比为2的等比数列,求p(-1)的值;
(2)若数列{an}是公差为2的等差数列,求证:p(x)是关于x的一次多项式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=22n-1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2001•上海)设数列{an}是公比为q>0的等比数列,Sn是它的前n项和,若
limn→+∞
Sn=7
,则此数列的首项a1的取值范围为
(0,7)
(0,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄冈模拟)数列{an}是公比为
1
2
的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1).
(Ⅰ)求数列{an}的通项公式及λ的值;
(Ⅱ)比较
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
1
2
Sn的大小.

查看答案和解析>>

同步练习册答案