精英家教网 > 高中数学 > 题目详情
7.求函数定义域:y=32x+1

分析 由2x+1取R,得x的范围是R.

解答 解:∵y=32x+1
∴函数的定义域是R.

点评 本题考查了函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.化简:
(1)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题中正确的是(  )
A.两个单位向量一定相等
B.若$\overrightarrow a$与$\overrightarrow b$不共线,则$\overrightarrow a$与$\overrightarrow b$都是非零向量
C.共线的单位向量必相等
D.两个相等的向量的起点、方向、长度必须相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知lg3=m,lg5=n,求1003m-2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线4x+8y+9=0与$\frac{1}{2}$x+y+2=0的位置关系是平行.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2${\;}^{-{x}^{2}+4x-3}$的递增区间为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于函数f(x)=asinx-bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(2)与f(-2),所得出的正确结果一定不可能是(  )
A.f(2)=4,f(-2)=6B.f(2)=3,f(-2)=1C.f(2)=1,f(-2)=2D.f(2)=2,f(-2)=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设D为不等式组$\left\{\begin{array}{l}{x+\frac{y}{{t}^{2}}≤1}\\{({t}^{2}+1)x-y≥-{t}^{2}}\\{x-2y≤1}\end{array}\right.$,表示的平面区域,其中t为常数且0<t<1,点B(m,n)为坐标平面xOy内一点,若对于区域D内的任一点A(x,y),都有$\overrightarrow{OA}•\overrightarrow{OB}$≤1成立,则m+n的最大值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{3}$x3-x2+a,函数g(x)=x2-3x,它们的定义域均为[1,+∞),并且函数f(x)的图象始终在函数g(x)的上方,那么a的取值范围是(  )
A.(-∞,-$\frac{4}{3}$)B.(-∞,0)C.(-$\frac{4}{3}$,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案