精英家教网 > 高中数学 > 题目详情
(2013•天津一模)已知函数f(x)=ax3+x2-ax,其中a,x∈R.
( I)当a=1时,求函数f(x)的单调递减区间;
(Ⅱ)若函数f(x)在区间(1,2)上不是单调函数,求实数a的取值范围;
(Ⅲ)若x∈[0,3]时,函数f(x)在x=0处取得最小值,求实数a的取值范围.
分析:(Ⅰ)把a=1代入函数解析式,求导后由导函数小于0得到原函数的减区间;
(Ⅱ)把函数f(x)在区间(1,2)上不是单调函数转化为函数的导函数在区间(1,2)上有不重复的零点,根据导函数有零点,分离变量后求出函数的值域,则a的范围可求;
(Ⅲ)由x∈[0,3]时,函数f(x)在x=0处取得最小值,转化为x∈[0,3]时,ax2+x-a≥0恒成立,分类讨论即可求得实数a的取值范围.
解答:解:(Ⅰ)当a=1时,f(x)=x3+x2-x.f'(x)=3x2+2x-1,
由f'(x)<0,即3x2+2x-1<0,得-1<x<
1
3

即当a=1时,函数f(x)的单调递减区间为(-1,
1
3
)

(Ⅱ)由f'(x)=3ax2+2x-a.
要使函数f(x)在区间(1,2)上不是单调函数,
则方程f'(x)=0在区间(1,2)内有不重复的零点,
而△=4+12a2>0,由3ax2+2x-a=0,得a(3x2-1)=-2x
∵x∈(1,2),∴(3x2-1)≠0,∴a=-
2x
3x2-1

u=-
2x
3x2-1
(x∈(1,2)),则u=-
2
3x-
1
x

u=-
2x
3x2-1
在区间(1,2)上是单调递增函数,其值域为(-1,-
4
11
)

故a的取值范围是(-1,-
4
11
)

(Ⅲ)由题意可知,当x∈[0,3]时,f(x)≥f(0)=0恒成立,
即x∈[0,3]时,ax2+x-a≥0恒成立.
记h(x)=ax2+x-a
当a=0时,h(x)=x≥0在x∈[0,3]时恒成立,符合题意;
当a>0时,由于h(0)=-a<0,则不符合题意;
当a<0时,由于h(0)=-a>0,则只需h(3)=8a+3≥0,得a≥-
3
8

-
3
8
≤a<0

综上,-
3
8
≤a≤0
点评:本题考查利用导数求闭区间上函数最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天津一模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(I)求椭圆E的方程;
(Ⅱ)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(Ⅲ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)抛物线y2=2px(p>0)上一点M(1,m) (m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于
1
9
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)已知数列{an}中a1=2,an+1=2-
1
an
,数列{bn}中bn=
1
an-1
,其中 n∈N*
(Ⅰ)求证:数列{bn}是等差数列;
(Ⅱ)设Sn是数列{
1
3
bn
}的前n项和,求
1
S1
+
1
S2
+…+
1
Sn

(Ⅲ)设Tn是数列{ (
1
3
)nbn }
的前n项和,求证:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)i是虚数单位,复数
3+i
1+i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津一模)设x∈R,则“x>0“是“x+
1
x
≥2
“的(  )

查看答案和解析>>

同步练习册答案