精英家教网 > 高中数学 > 题目详情
12.已知双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{\sqrt{5}}{2}$,P是该双曲线上的点,P在该双曲线两渐近线上的射影分别是A、B,则|PA|•|PB|的值为$\frac{4}{5}$.

分析 运用离心率公式,解方程可得m=1,求得渐近线方程,设P(s,t),可得s2-4t2=4,运用点到直线的距离公式,化简整理,即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{\sqrt{5}}{2}$,
可得e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{(m+1)^{2}+{m}^{2}}{(m+1)^{2}}$=$\frac{5}{4}$,
解得m=1,
即双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,
渐近线方程为x±2y=0,
设P(s,t),可得s2-4t2=4,
由题意可得|PA|•|PB|=$\frac{|s+2t|}{\sqrt{1+4}}$•$\frac{|s-2t|}{\sqrt{1+4}}$
=$\frac{|{s}^{2}-4{t}^{2}|}{5}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.

点评 本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查点到直线的距离公式,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,且经过点(0,1),四边形MNPQ的四个顶点都在椭圆C上,对角线MP所在直线的斜率为-1,且MN=MQ,PN=PQ.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+5y≥4}\end{array}\right.$,则$\frac{y}{x}$的最大值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算sin(-960°)的值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C及所对的边分别为a,b,c,已知,c=2.
(1)若cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB且a≠b,求角C的大小及a+b的取值范围;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)求函数f(x)的单调区间;
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了调查高二年级630名学生对学校食堂午餐学生浪费饭菜的情况,打算从中抽取一个容量为45的样本,考虑采取系统抽样,则分段间隔k为(  )
A.16B.14C.12D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中有6条与平面ABB1A1平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一直线l与平行四边形ABCD中的两边AB、AD分别交于E、F,且交其对角线AC于K,若$\overrightarrow{AB}$=2$\overrightarrow{AE}$,$\overrightarrow{AD}$=3$\overrightarrow{AF}$,$\overrightarrow{AC}$=λ$\overrightarrow{AK}$(λ∈R),则λ=(  )
A.2B.$\frac{5}{2}$C.3D.5

查看答案和解析>>

同步练习册答案