分析 运用离心率公式,解方程可得m=1,求得渐近线方程,设P(s,t),可得s2-4t2=4,运用点到直线的距离公式,化简整理,即可得到所求值.
解答 解:双曲线$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的离心率为$\frac{\sqrt{5}}{2}$,
可得e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{(m+1)^{2}+{m}^{2}}{(m+1)^{2}}$=$\frac{5}{4}$,
解得m=1,
即双曲线的方程为$\frac{{x}^{2}}{4}$-y2=1,
渐近线方程为x±2y=0,
设P(s,t),可得s2-4t2=4,
由题意可得|PA|•|PB|=$\frac{|s+2t|}{\sqrt{1+4}}$•$\frac{|s-2t|}{\sqrt{1+4}}$
=$\frac{|{s}^{2}-4{t}^{2}|}{5}$=$\frac{4}{5}$.
故答案为:$\frac{4}{5}$.
点评 本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查点到直线的距离公式,化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 14 | C. | 12 | D. | 22 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | 3 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com