精英家教网 > 高中数学 > 题目详情
如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC为直径的圆交AB于D,则AD的长为(  )
精英家教网
A、
9
5
B、
12
5
C、
16
5
D、4
分析:连接CD.由勾股定理求得直角三角形的斜边是5,根据直径所对的圆周角是直角,得CD⊥AB,再根据直角三角形的面积公式,求得CD=
AC•BC
AB
=
12
5
,最后由勾股定理求得AD=
16
5
解答:精英家教网解:连接CD,
∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB=5,
∵AC为直径,
∴CD⊥AB,
∴CD=
AC•BC
AB
=
12
5

∴AD=
AC2-CD2
=
16
5

故选C.
点评:注意圆中常见的辅助线之一:构造直径所对的圆周角,得到直角三角形,熟练运用勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ABC=90°,BA=BC=2,分别过A、C作平面ABC的垂线AA′和CC′,AA′=h1,CC′=h2,且h1>h2,连接A′C和AC′交于点P.
(I)设点M为BC中点,求证:直线PM与平面A′AB不平行;
(II)设O为AC中点,若h1=2,二面角A-A′C′-B等于45°,求直线OP与平面A′BP所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江二模)如图,Rt△ABC中,∠C=90°,∠A=30°,圆O经过B、C且与AB、AC分别相交于D、E.若AE=EC=2
3
,则圆O的半径r=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在Rt△ABC中,三个顶点坐标分别为A(-1,0),B(1,0),C(-1,
2
2
)
,曲线E过C点且曲线E上任一点P满足|PA|+|PB|是定值.
(Ⅰ)求出曲线E的标准方程;
(Ⅱ)设曲线E与x轴,y轴的交点分别为D、Q,是否存在斜率为k的直线l过定点(0,
2
)
与曲线E交于不同的两点M、N,且向量
OM
+
ON
DQ
共线.若存在,求出此直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,其内切圆切AC与D点,O为圆心.若|
AD
|=2|
CD
|=2,则
BO
AC
=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,Rt△ABC中,C=90°,A=30°,圆O经过B、C且与AB、AC相交于D、E.若AE=EC=2
3
,则AD=
 
,圆O的半径r=
 

查看答案和解析>>

同步练习册答案