精英家教网 > 高中数学 > 题目详情
7.已知直线l:$\left\{\begin{array}{l}{x=t}\\{y=t+1}\end{array}\right.$(t为参数),圆C:ρ=2cosθ,则圆心C到直线l的距离是$\sqrt{2}$.

分析 将直线l先化为一般方程坐标,将圆C的极坐标方程化成直角坐标方程,然后再计算圆心C到直线l的距离.

解答 解:直线l的普通方程为x-y+1=0,圆C的直角坐标方程为x2+y2-2x=0.
所以圆心C(1,0)到直线l的距离d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题可查了查把参数方程和极坐标方程化为直角坐标方程、点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}3x-5,(x≥6)\\ f(x+2),(x<6)\end{array}$,则f(3)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(-$\frac{π}{2}$,$\frac{π}{2}$)上随机取一个数x,则tanx>1的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知某工厂某批次的10件产品中,错装入3件次品,现在采用不放回方式抽取3次,已知第一次抽到是次品,则第三次抽次品的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\sqrt{x}$的导函数是(  )
A.$\frac{1}{2\sqrt{x}}$B.$\frac{1}{\sqrt{x}}$C.2$\sqrt{x}$D.$\frac{1}{2}$$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-ax2+1.
(1)若函数在x=4时取得极值,求a的值.
(2)若函数f(x)在区间(3,+∞)内单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>b>0,则下列结论中不正确的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$>$\frac{a+b}{2}$
C.$\root{3}{-a}$<$\root{3}{-b}$D.log0.3$\frac{1}{a}$<log0.3$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A、B、C所对的边分别为a,b,c且a=5,sinA=$\frac{\sqrt{5}}{5}$.
( I ) 若cosB=$\frac{3}{5}$,求边c的值.
(Ⅱ)若S△ABC=$\sqrt{5}$,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C:x2+y2-2x-1=0,直线l:3x-4y+12=0,圆C上任意一点P到直线l的距离小于2的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案