精英家教网 > 高中数学 > 题目详情
5.在△ABC中,角A,B,C的对边为a,b,c,若b=$\sqrt{5}$,∠B=$\frac{π}{4}$,cosA=$\frac{{\sqrt{10}}}{10}$,则边a等于(  )
A.1B.$\frac{5}{3}$C.3D.5

分析 cosA=$\frac{{\sqrt{10}}}{10}$,A∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$,再利用正弦定理即可得出.

解答 解:在△ABC中,∵cosA=$\frac{{\sqrt{10}}}{10}$,A∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3\sqrt{10}}{10}$.
由正弦定理可得:a=$\frac{bsinA}{sinB}$=$\frac{\sqrt{5}×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}}$=3.
故选:C.

点评 本题考查了正弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π
(1)求函数f(x)的单调减区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到y=g(x)的图象,若y=g(x)在[0,b]上至少含有8个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=x2+bx+c(b,c∈R),若f(-1)=f(2),且函数y=f(x)-x的值域为[0,+∞).
(1)求函数f(x)的解析式;
(2)若函数g(x)=2x-k,当x∈[1,2]时,记f(x),g(x)的值域分别为A,B,若A∪B=A,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在三棱锥P-ABC中,若PA=PB=BC=AC=5,PC=AB=4$\sqrt{2}$,则其的外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在(1+x)3+(1+x)4+…+(1+x)9的展开式中,x2项的系数为119.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过点P(1,1)作直线l,分别交x,y正半轴于A,B两点.
(1)若直线l与直线x-3y+1=0垂直,求直线l的方程;
(2)若直线l在y轴上的截距是直线l在x轴上截距的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果X~N(μ,σ2),设m=P(X=a)(a∈R),则(  )
A.m=1B.m=0C.0≤m≤1D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x|x>0},B={x|x<4},则∁A(A∩B)等于(  )
A.{x|x<0}B.{x|0<x<4}C.{x|x≥4}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和为Sn,已知a3=6,S3=15.
(1)求{an}的首项a1和公差d的值;
(2)设数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+a3b3+…+anbn=(n2+n)•2n+1.求数列{bn}的通项公式bn及前n项和为Tn

查看答案和解析>>

同步练习册答案