精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π
(1)求函数f(x)的单调减区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到y=g(x)的图象,若y=g(x)在[0,b]上至少含有8个零点,求b的最小值.

分析 (1)利用三角恒等变换化简函数f(x)的解析式,再利用正弦函数的单调性求得函数f(x)的单调减区间.
(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据g(x)在[0,b]上至少含有8个零点,求得b的最小值.

解答 解:(1)∵函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$=sin2ωx-$\sqrt{3}$cos2ωx=2sin(2ωx-$\frac{π}{3}$)(ω>0)
的最小正周期为$\frac{2π}{2ω}$=π,∴ω=1,f(x)=2sin(2x-$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,故函数的减区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z.
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到y=g(x)=2sin(2x+$\frac{π}{3}$-$\frac{π}{3}$)+1=2sin2x+1的图象,
若y=g(x)在[0,b]上至少含有8个零点,
令g(x)=0,求得sin2x=-$\frac{1}{2}$,即2x=2kπ+$\frac{7π}{6}$,或 2x=2kπ+$\frac{11π}{6}$ k∈Z,
即x=kπ+$\frac{7π}{12}$,或x=kπ+$\frac{11π}{12}$,
故k=0,1,2,3,故b的最小值即函数g(x)的第8个零点(从小到大排列),即 3π+$\frac{11π}{12}$=$\frac{47π}{12}$.

点评 本题主要考查三角恒等变换,正弦函数的单调性、零点,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.棱长为2的正方体被截去一个角后所得几何体的三视图如图所示,则该几何体的体积为$\frac{22}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图,则该几何体的表面积为(  )
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${({\frac{16}{81}})^{-\frac{1}{4}}}$+2lg4+lg$\frac{5}{8}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2-6x-8y+24=0和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得$\overrightarrow{AP}•\overrightarrow{BP}=0$,则m的最大值与最小值之差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是△ABC所在平面内一点,若对任意k∈R,恒有|$\overrightarrow{OA}$-$\overrightarrow{OB}$-k$\overrightarrow{BC}$|≥|$\overrightarrow{AO}$-$\overrightarrow{CO}$|,则△ABC一定是(  )
A.直角三角形B.钝角三角形C.锐角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.棱长都相等的三棱锥P-ABC,平面α经过点P且与平面ABC平行,平面β经过BC且与棱PA平行,α∩平面PBC=m,α∩β=n,则(  )
A.m⊥nB.m,n成60°角C.m∥nD.m,n成30°角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数 f(x)的导数为 f'(x),且满足关系式 f(x)=x3•$\int_0^2{xdx+{x^2}f'(1)+3x}$,则 f'(2)的值等于-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C的对边为a,b,c,若b=$\sqrt{5}$,∠B=$\frac{π}{4}$,cosA=$\frac{{\sqrt{10}}}{10}$,则边a等于(  )
A.1B.$\frac{5}{3}$C.3D.5

查看答案和解析>>

同步练习册答案