精英家教网 > 高中数学 > 题目详情
6.某几何体的三视图如图,则该几何体的表面积为(  )
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

分析 根据三视图得出该几何体是直径为2的球,与底面边长为2的正方形,高为4的棱柱的组合体,即可求出它的表面积.

解答 解:根据几何体的三视图,得;
该几何体是直径为2的球,与底面边长为2的正方形,高为4的棱柱的组合体;
该几何体的表面积为S=S+S棱柱全=4π•12+2•22+2•4•4=40+4π.
故选:D.

点评 本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体是什么图形,从而进行解答,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a=log${\;}_{\frac{1}{3}}}$$\frac{1}{2}$,b=log${\;}_{\frac{1}{5}}}$$\frac{1}{2}$,c=2${\;}^{\frac{1}{3}}}$,则a,b,c的大小关系为(  )
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.几何体的三视图如图所示,则该几何体的体积为4+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知关于x的方程x2+2bx+c=0(b,c∈R)在[-1,1]上有实数根,0≤4b+c≤3,则b的取值范围是-1≤b≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,点E为线段AD上的一点.现将△DCE沿线段EC翻折到PEC(点D与点P重合),使得平面PAC⊥平面ABCE,连接PA,PB.
(I)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求二面角P-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四边形ABCD是菱形,ACEF是矩形,平面ACEF⊥平面ABCD,AB=2AF=2,∠BAD=60°,G是BE的中点.
(Ⅰ)证明:CG∥平面BDF
(Ⅱ)求二面角E-BF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(-8,0),B(-2,0),动点P满足|PA|=2|PB|.
(1)求动点P的轨迹C的方程;
(2)过点A,斜率为$\frac{1}{2}$的直线l与P点的轨迹交两点M,N,求△MNB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π
(1)求函数f(x)的单调减区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到y=g(x)的图象,若y=g(x)在[0,b]上至少含有8个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)=x2+bx+c(b,c∈R),若f(-1)=f(2),且函数y=f(x)-x的值域为[0,+∞).
(1)求函数f(x)的解析式;
(2)若函数g(x)=2x-k,当x∈[1,2]时,记f(x),g(x)的值域分别为A,B,若A∪B=A,求实数k的值.

查看答案和解析>>

同步练习册答案