精英家教网 > 高中数学 > 题目详情
1.如图,在四边形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,点E为线段AD上的一点.现将△DCE沿线段EC翻折到PEC(点D与点P重合),使得平面PAC⊥平面ABCE,连接PA,PB.
(I)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求二面角P-AB-C的余弦值.

分析 (Ⅰ)连结AC,BD交于点O,推导出△ABC≌△ADC,∠DAC=∠BAC,从而AC⊥BD,由此能证明BD⊥平面PAC.
(Ⅱ)以O为原点,以直线OA,OB分别为x轴,y轴,平面PAC内过O且垂直于直线AC的直线为z轴,建立空间直角坐标系,利用向量法能求出二面角P-AB-C的余弦值.

解答 证明:(Ⅰ)连结AC,BD交于点O,在四边形ABCD中
∵AB=AD=4,BC=CD=$\sqrt{7}$,AC=AC,
∴△ABC≌△ADC,∴∠DAC=∠BAC,
∴AC⊥BD,
又∵平面PAC⊥平面ABCE,且平面PAC∩平面ABCE=AC,
∴BD⊥平面PAC.
解:(Ⅱ)如图,以O为原点,以直线OA,OB分别为x轴,y轴,
平面PAC内过O且垂直于直线AC的直线为z轴,建立空间直角坐标系,
设P(x,o,z),由题意得A(2$\sqrt{3}$,0,0),B(0,2,0),C(-$\sqrt{3}$,0,0),E($\sqrt{3}$,-1,0),
∵PE=2,PC=$\sqrt{7}$,
∴$\left\{\begin{array}{l}{(x-\sqrt{3})^{2}+1+{z}^{2}=4}\\{(x+\sqrt{3})^{2}+{z}^{2}=7}\end{array}\right.$,解得x=$\frac{\sqrt{3}}{3}$,z=$\frac{\sqrt{15}}{3}$,∴P($\frac{\sqrt{3}}{3}$,0,$\frac{\sqrt{15}}{3}$),
∴$\overrightarrow{AP}$=(-$\frac{5\sqrt{3}}{3}$,0,$\frac{\sqrt{15}}{3}$),$\overrightarrow{AB}$=(-2$\sqrt{3}$,2,0),
设平面PAB的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{AP}•\overrightarrow{n}=-\frac{5\sqrt{3}}{3}a+\frac{\sqrt{15}}{3}c=0}\\{\overrightarrow{AB}•\overrightarrow{n}=-2\sqrt{3}a+2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,$\sqrt{5}$),
平面$\overrightarrow{m}$=(0,0,1),
设二面角P-AB-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{5}}{3}$,
∴二面角P-AB-C的余弦值为$\frac{\sqrt{5}}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设复数z1=1+i,z2=$\sqrt{3}$+i,其中i为虚数单位,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虚部为(  )
A.-$\frac{{1+\sqrt{3}}}{4}$iB.-$\frac{{1+\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}-1}}{4}$iD.$\frac{{\sqrt{3}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,该几何体的表面积为(  )
A.6+$\frac{11+\sqrt{3}}{4}$πB.6+$\frac{13+\sqrt{3}}{2}$πC.6+$\frac{9+\sqrt{5}}{2}$πD.6+$\frac{11+\sqrt{5}}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某几何体的三视图,其中正视图是正方形,侧视图是矩形,俯视图是半径为2的半圆,则该几何体的表面积等于16+12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x-$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$(m∈R),对任意x3≥e,存在0<x1<x2<x3,使得f(x1)=f(x3)=g(x2),则实数m的取值范围为(  )
A.(0,e2-1)B.(e2-1,+∞)C.(0,e2+1)D.(e2+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图,则该几何体的表面积为(  )
A.16+$\frac{4}{3}$πB.38+4πC.40+πD.40+4π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图甲,设正方形ABCD的边长为3,点E,F分别在AB,CD上,并且满足AE=2EB,CF=2FD,如图乙,将直角梯形AEFD沿EF折到A1EFD1的位置,使点A1在平面EBCF上的射影G恰好在BC上.M点为EA1的中点.
(1)证明:BM∥平面CD1F;
(2)求二面角M-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2-6x-8y+24=0和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得$\overrightarrow{AP}•\overrightarrow{BP}=0$,则m的最大值与最小值之差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=AB=1,BC=$\sqrt{3}$,AC=2.
(1)求证:BC⊥平面PAB;
(2)若AE⊥PB于点E,AF⊥PC于点F,求四棱锥A-BCFE的体积.

查看答案和解析>>

同步练习册答案