精英家教网 > 高中数学 > 题目详情
13.如图甲,设正方形ABCD的边长为3,点E,F分别在AB,CD上,并且满足AE=2EB,CF=2FD,如图乙,将直角梯形AEFD沿EF折到A1EFD1的位置,使点A1在平面EBCF上的射影G恰好在BC上.M点为EA1的中点.
(1)证明:BM∥平面CD1F;
(2)求二面角M-BF-C的余弦值.

分析 (1)推导出A1E∥D1F,BE∥CF,从而平面A1EB∥平面D1FC,由此能证明BM∥平面CD1F.
(2)作GH⊥EF,垂足为H,连接A1H,作GT∥BE交EF于点T,则TG⊥GC,以点G为原点,分别以GC、GT、GA1所在直线为x、y、z轴,建立如空间直角坐标系,利用向量法能求出二面角M-BF-C的余弦值.

解答 证明:(1)在图甲中,由题意知AE∥DF,
从而在图乙中有A1E∥D1F
又BE∥CF,BE∩A1E,D1F∩CF=F,
A1E,BE?平面A1EB,D1F,CF?平面D1FC,
∴平面A1EB∥平面D1FC,
又BM?平面A1EB,∴BM∥平面CD1F.
(2)解:如图,在图乙中作GH⊥EF,垂足为H,连接A1H,由于A1G⊥平面EBCF,则A1G⊥EF,
∴EF⊥平面A1GH,则EF⊥A1H,图甲中有EF⊥AH,
又GH⊥EF,则A、G、H三点共线,
设CF的中点为N,则NF=1,可证△ABG≌△ENF,
∴BG=NF=1,则AG=$\sqrt{10}$;
又由△ABG∽△AHE,得A1H=AH=$\frac{AB•AE}{AG}$=$\frac{6}{\sqrt{10}}$,
于是,HG=AG-AH=$\frac{4}{\sqrt{10}}$,
在Rt△A1GH中,A1G=$\sqrt{{A}_{1}{H}^{2}-H{G}^{2}}$=$\sqrt{(\frac{6}{\sqrt{10}})^{2}-(\frac{4}{\sqrt{10}})^{2}}$=$\sqrt{2}$,
作GT∥BE交EF于点T,则TG⊥GC,
以点G为原点,分别以GC、GT、GA1所在直线为x、y、z轴,建立如图丙所示的空间直角坐标系,
则G(0,0,0),E(-1,1,0),F(2,2,0),A1(0,0,$\sqrt{2}$),
B(-1,0,0),M(-$\frac{1}{2},\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),C(2,0,0),
$\overrightarrow{BF}$=(3,2,0),$\overrightarrow{BM}$=($\frac{1}{2}$,$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}$=(3,0,0),
设平面BFM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BF}=3x+2y=0}\\{\overrightarrow{n}•\overrightarrow{BM}=\frac{1}{2}x+\frac{1}{2}y+\frac{\sqrt{2}}{2}z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-3,$\frac{\sqrt{2}}{2}$),
平面BFC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角M-BF-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\frac{\sqrt{2}}{2}}{\sqrt{\frac{27}{2}}}$=$\frac{\sqrt{3}}{9}$.
∴二面角M-BF-C的余弦值为$\frac{\sqrt{3}}{9}$.

点评 熟练掌握线面平行的判定定理、三角形的相似与全等的判定定理和性质定理、通过建立空间直角坐标系利用法向量的夹角求二面角的方法等知识与方法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合P={x|x2-4<0},则Q={x|x=2k+1,k∈Z},则P∩Q=(  )
A.{-1,1}B.[-1,1]C.{-1,-3,1,3}D.{-3,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式|x+3|<2x+1的解集为{x|x>m}.
(Ⅰ)求m的值;
(Ⅱ)设关于x的方程|x-t|+|x+$\frac{1}{t}$|=m(t≠0)有实数根,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,AB=AD=4,BC=CD=$\sqrt{7}$,点E为线段AD上的一点.现将△DCE沿线段EC翻折到PEC(点D与点P重合),使得平面PAC⊥平面ABCE,连接PA,PB.
(I)证明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且点E为线段AD的中点,求二面角P-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示.在△ABC中,已知AB<BC,点I为其内心,M为边AC上的中点,N为外接圆的弧$\widehat{ABC}$的中点.证明:∠IMA=∠INB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(-8,0),B(-2,0),动点P满足|PA|=2|PB|.
(1)求动点P的轨迹C的方程;
(2)过点A,斜率为$\frac{1}{2}$的直线l与P点的轨迹交两点M,N,求△MNB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.对于定义在R上的函数f(x),定义同时满足下列三个条件的函数为“Z函数”:
①对任意x∈(-∞,a],都有f(x)=C1
②对任意x∈[b,+∞),都有f(x)=C2
③对任意x∈(a,b),都有(f(x)-C1)(f(x)-C2)<0.(其中a<b,C1,C2为常数)
(1)判断函数f1(x)=|x-1|-|x-3|+1和f2(x)=x-|x-2|是否为R上的“Z函数”?
(2)已知函数g(x)=|x-2|-$\sqrt{{x^2}+mx+4}$,是否存在实数m,使得g(x)为R上的“Z函数”?若存在,求实数m的值;否则,请说明理由;
(3)设f(x)是(1)中的“Z函数”,令h(x)=|f(x)|,若h(2a2+a)=h(4a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=cos2x+$\sqrt{3}$sinxcosx的最小正周期是π,最小值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{5}{2+i}$的共轭复数是(  )
A.-$\frac{5}{3}-\frac{10}{3}$iB.-$\frac{5}{3}+\frac{10}{3}i$C.2+iD.2-i

查看答案和解析>>

同步练习册答案