精英家教网 > 高中数学 > 题目详情
12.己知实数x,y满足条件$\left\{{\begin{array}{l}{x≤0}\\{x-y≥0}\\{2x+y+k≤0}\end{array}}\right.$(k为常数),若z=x+3y的最大值为-8,则k的值为(  )
A.4B.6C.8D.10

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{{\begin{array}{l}{x≤0}\\{x-y≥0}\\{2x+y+k≤0}\end{array}}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y=0}\\{2x+y+k=0}\end{array}\right.$,解得A($-\frac{k}{3},-\frac{k}{3}$),
化目标函数z=x+3y为$y=-\frac{x}{3}+\frac{z}{3}$,
由图可知,当直线$y=-\frac{x}{3}+\frac{z}{3}$过A($-\frac{k}{3},-\frac{k}{3}$)时,直线在y轴上的截距最小,z有最小值为$-\frac{k}{3}+3×(-\frac{k}{3})=-\frac{4k}{3}=-8$,
解得k=6.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设f(x)是定义在(-∞,+∞)上的偶函数,且当x≥0时,f(x)=x3+1,则当x<0时,f(x)=-x3+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是等比数列,Sn是前n项和,且S3=$\frac{7}{2}$,S6=$\frac{63}{2}$.
(1)求数列{an}的通项公式;
(2)求前8项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)是偶函数,当x>0时,f(x)为增函数,设a=f(-$\frac{5}{2}$),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2-4x-4y-10=0上至少有三个不同的点,到直线l:y=x+b的距离为2$\sqrt{2}$,则b取值范围为(  )
A.(-2,2)B.[-2,2]C.[0,2]D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.60,P(B)=0.25,P(C)=0.15.则事件“抽到的是二等品或三等品”的概率为(  )
A.0.6B.0.85C.0.75D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)为R上的奇函数,且x>0时f(x)=-x2+(a+2)x-a2+5(其中a为实常数).
(1)求f(0)的值;
(2)求x<0时f(x)的解析式;
(3)若f(x)在区间(0,2]上的最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}中.a1=2,a2=3,其前n项和Sn满足Sn+2+Sn=2Sn+1+1(n∈N*);数列{bn}中,b1=a1,bn+1=4bn+6(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=bn+2+(-1)n-1λ•2${\;}^{{a}_{n}}$(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>

同步练习册答案