分析 过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PB|,可得$\frac{|PN|}{|PA|}=\frac{1}{m}$,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可求得双曲线的离心率.
解答 解:过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PB|,
∵|PA|=m|PB|,∴|PA|=m|PN|,则$\frac{|PN|}{|PA|}=\frac{1}{m}$,
设PA的倾斜角为α,则sinα=$\frac{1}{m}$,
当m取得最大值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx-1,代入x2=4y,可得x2=4(kx-1),
即x2-4kx+4=0,
∴△=16k2-16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为PA-PB=2($\sqrt{2}$-1),
∴双曲线的离心率为$\frac{2}{2(\sqrt{2}-1)}=\sqrt{2}+1$.
故答案为:$\sqrt{2}+1$.
点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最大值时,sinα最小,此时直线PA与抛物线相切,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | (2,4) | C. | (2,6) | D. | (4,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{17}$ | B. | $\frac{4}{5}$ | C. | $±\frac{4}{17}$ | D. | $\frac{4}{17}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com