精英家教网 > 高中数学 > 题目详情
7.已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为$\sqrt{2}+1$.

分析 过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PB|,可得$\frac{|PN|}{|PA|}=\frac{1}{m}$,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可求得双曲线的离心率.

解答 解:过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PB|,
∵|PA|=m|PB|,∴|PA|=m|PN|,则$\frac{|PN|}{|PA|}=\frac{1}{m}$,
设PA的倾斜角为α,则sinα=$\frac{1}{m}$,
当m取得最大值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx-1,代入x2=4y,可得x2=4(kx-1),
即x2-4kx+4=0,
∴△=16k2-16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为PA-PB=2($\sqrt{2}$-1),
∴双曲线的离心率为$\frac{2}{2(\sqrt{2}-1)}=\sqrt{2}+1$.
故答案为:$\sqrt{2}+1$.

点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最大值时,sinα最小,此时直线PA与抛物线相切,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)$\underset{lim}{x→0}$$\frac{\sqrt{1+xsinx}-1}{{e}^{3x}-1}$
(2)$\underset{lim}{x→0}$$\frac{tanx-sinx}{x(arcsinx)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}满足:a6=13,a2+a4=14,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$,(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.点P(a,3)到直线4x+3y-1=0的距离为4,且在直线2x+y-3=0的下方区域内,则a=(  )
A.-3B.3C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\frac{x}{2x+1}$,则f[f(x)]=$\frac{x}{4x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.己知实数x,y满足条件$\left\{{\begin{array}{l}{x≤0}\\{x-y≥0}\\{2x+y+k≤0}\end{array}}\right.$(k为常数),若z=x+3y的最大值为-8,则k的值为(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.平面上到定点A(l,2)距离为1且到定点B(5,5)距离为d的直线共有4条,则d的取值范是(  )
A.(0,4)B.(2,4)C.(2,6)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:集合 A={x|x2+(m+2)x+1=0,x∈R},集合 B=(0,+∞),且 A∩B≠∅;命题q:方程x2-mx+1=0有两个不相等的实数根.
(1)求命题p成立时的集合 P以及命题q成立时的集合Q;
(2)若“p或q”为真命题,“p且q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若$\frac{sinθ+2cosθ}{sinθ-cosθ}$=2,则sinθ•cosθ=(  )
A.-$\frac{4}{17}$B.$\frac{4}{5}$C.$±\frac{4}{17}$D.$\frac{4}{17}$

查看答案和解析>>

同步练习册答案