分析 根据题意,|PF1|•|PF2|的最大值为a2,则由题意知2c2≤a2≤3c2,由此能够导出椭圆m的离心率e的取值范围,即可求出椭圆离心率e取值的最大值.
解答 解:∵|PF1|•|PF2|的最大值=a2,
∴由题意知2c2≤a2≤3c2,
∴$\sqrt{2}$c≤a≤$\sqrt{3}$a,
∴$\frac{\sqrt{3}}{3}$≤e≤$\frac{\sqrt{2}}{2}$.
故椭圆离心率e取值的最大值为$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题主要考查椭圆的简单性质.考查对基础知识的综合运用.|PF1|•|PF2|的最大值=a2是正确解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{5}$ | C. | 2$\sqrt{5}$ | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com