精英家教网 > 高中数学 > 题目详情

已知椭圆C:的短轴一个端点与两个焦点可组成一个等边三角形,那么椭圆C的离心率为

[  ]
A.

B.

C.

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•文昌模拟)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点是(1,0),两个焦点与短轴的一个端点
构成等边三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的对称点为A1
(ⅰ)求证:直线A1B过x轴上一定点,并求出此定点坐标;
(ⅱ)求△OA1B面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
4
5
,两焦点为F1,F2,B1,B2为椭圆C短轴的两端点,动点M在椭圆C上.且△MF1F2的周长为18.
(I)求椭圆C的方程;
(II)当M与B1,B2不重合时,直线B1M,B2M分别交x轴于点K,H.求
OH
OK
的值;
(III)过点M的切线分别交x轴、y轴于点P、Q.当点M在椭圆C上运动时,求|PQ|的最小值;并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳模拟)已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的长半轴是短半轴的
3
倍,直线x-y+
2
=0
经过
椭圆C的一个焦点.
(1)求椭圆C的方程;
(2)设一条直线 l与椭圆C交于A、B两点,坐标原点O到直线l的距离为
3
2
,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西师大附中,临川一中高三期末联考文科数学试卷(解析版) 题型:解答题

已知椭圆C的一个焦点是(10),两个焦点与短轴的一个端点构成等边三角形.

1)求椭圆C的方程;

2)过点Q40)且不与坐标轴垂直的直线l交椭圆CAB两点,设点A关于x轴的

对称点为A1.求证:直线A1Bx轴上一定点,并求出此定点坐标.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三高考压轴考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知椭圆C:的短轴长为,且斜率为的直线过椭圆C的焦点及点

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知一直线过椭圆C的左焦点,交椭圆于点P、Q,

(ⅰ)若满足为坐标原点),求的面积;

(ⅱ)若直线与两坐标轴都不垂直,点M在轴上,且使的一条角平分线,则称点M为椭圆C的“左特征点”,求椭圆C的左特征点。

 

查看答案和解析>>

同步练习册答案