如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
(1)见解析(2)
【解析】(1)由AB是圆的直径,得AC⊥BC,
由PA⊥平面ABC,BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC.
因为BC?平面PBC,
所以平面PBC⊥平面PAC.
(2)过C作CM∥AP,则CM⊥平面ABC.
如图,以点C为坐标原点,分别以直线CB、CA、CM为x轴,y轴,z轴建立空间直角坐标系.
在Rt△ABC中,因为AB=2,AC=1,所以BC=.
因为PA=1,所以A(0,1,0),B(,0,0),P(0,1,1).故=(,0,0),=(0,1,1).
设平面BCP的法向量为n1=(x1,y1,z1),则所以
不妨令y1=1,则n1=(0,1,-1).因为=(0,0,1),=(,-1,0),
设平面ABP的法向量为n2=(x2,y2,z2),则所以
不妨令x2=1,则n2=(1,,0).于是cos〈n1,n2〉==.
由题图可判断二面角为锐角,所以二面角C-PB-A的余弦值为.
科目:高中数学 来源:2014年高考数学(理)二轮复习体系通关训练1-11练习卷(解析版) 题型:选择题
从0,1中选一个数字,从2,4,6中选两个数字,组成无重复数字的三位数,其中偶数的个数为( ).
A.36 B.30 C.24 D.12
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评7练习卷(解析版) 题型:选择题
某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组为[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( ).
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评6练习卷(解析版) 题型:选择题
抛物线y2=8x的焦点到直线x-y=0的距离是( ).
A.2 B.2 C. D.1
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评5练习卷(解析版) 题型:填空题
已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评5练习卷(解析版) 题型:选择题
设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是 ( ).
A.若α⊥β,m?α,n?β,则m⊥n
B.若α∥β,m?α,n?β,,则m∥n
C.若m⊥n,m?α,n?β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评4练习卷(解析版) 题型:选择题
在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则S10=( ).
A.2100 B.2600 C.2800 D.3100
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(理)二轮复习专题能力测评2练习卷(解析版) 题型:选择题
下列函数中,不满足f(2x)=2f(x)的是( ).
A.f(x)=|x| B.f(x)=x-|x| C.f(x)=x+1 D.f(x)=-x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com