精英家教网 > 高中数学 > 题目详情

【题目】已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为(
A.6
B.
C.
D.4+2

【答案】C
【解析】解:∵|AF|=4,由抛物线的定义得, ∴A到准线的距离为4,即A点的横坐标为﹣2,
又点A在抛物线上,∴从而点A的坐标A(﹣2,4);
坐标原点关于准线的对称点的坐标为B(4,0)
则|PA|+|PO|的最小值为:
|AB|= =
故选C.
利用抛物线的定义由|AF|=4得到A到准线的距离为4,即可求出点A的坐标,根据:“|PA|+|PO|”相当于在准线上找一点,使得它到两个定点的距离之和最小,最后利用平面几何的方法即可求出距离之和的最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下四图,都是同一坐标系中三次函数及其导函数的图象,其中一定正确的序号是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆C1的参数方程为 (φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2 cos(θ﹣ ). (Ⅰ)将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(Ⅱ)圆C1 , C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[﹣3,3]上的增函数f(x)满足f(﹣x)=﹣f(x),且f(m+1)+f(2m﹣1)>0,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)利用定义证明:函数f(x)在区间(0,+∞)上为增函数;
(2)当x∈(0,1)时,tf(2x)≥2x﹣1恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中值域为(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常数,当s+t取最小值 时,m、n对应的点(m,n)是双曲线 一条弦的中点,则此弦所在的直线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米. (Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

查看答案和解析>>

同步练习册答案