精英家教网 > 高中数学 > 题目详情
数列是一个首项为4,公比为2的等比数,Sn是{an}的前n项和.
(1)求数列{an}的通项及Sn
(2)设点列试求出一个半径最小的圆,使点列Qn中任何一个点都不在该圆外部.
【答案】分析:(1)根据数列是一个首项为4,公比为2的等比数,可得,从而求出{an}是以1为首项,为公差的等差数列,即可求出数列{an}的通项及Sn
(2)设Qn(x,y),从而可得Qn在直线3x-2y-1=0上,横坐标、纵坐标随n的增大而减小,并与无限接近,故所求圆就是以(1,1)、为直径端点的圆.
解答:解:(1)∵∴a1=1
故{an}是以1为首项,为公差的等差数列 (3分)
(5分)
(2)设Qn(x,y)∴
由此可得Qn在直线3x-2y-1=0上                       (8分)
横坐标、纵坐标随n的增大而减小,并与无限接近,
故所求圆就是以(1,1)、为直径端点的圆即(12分)
点评:本题主要考查了数列的通项公式和数列的求和,以及极限的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)数列{4an}是一个首项为4,公比为2的等比数,Sn是{an}的前n项和.
(1)求数列{an}的通项及Sn
(2)设点列Qn(
an
n
Sn
n2
),n∈N+
试求出一个半径最小的圆,使点列Qn中任何一个点都不在该圆外部.

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考模拟考试(文) 题型:解答题

 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市卢湾区高考模拟考试(理) 题型:解答题

 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.

     设数列是一个首项为、公差为的无穷等差数列.

(1)若成等比数列,求其公比

(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.

(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案