精英家教网 > 高中数学 > 题目详情
在三角形ABC中,A=120°,AB=5,BC=7,则
sinBsinC
的值为
 
分析:先通过余弦定理及题设中的条件求出AC的值,再根据正弦定理得出结果.
解答:解:根据余弦定理cosA=
AB2+AC2-BC2
2•AB•AC
=
25+AC2-49
2•5•AC
=-
1
2

∴AC=3或AC=-8(排除)
根据正弦定理
AC
sinB
=
AB
sinC
,即
3
sinB
=
5
sinC

sinB
sinC
=
3
5

故答案为
3
5
点评:本题主要考查了正弦定理和余弦定理的应用.在解决三角形的问题中,常通过这连个定理完成边和角的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a-c)cosB
(Ⅰ)求∠B的大小
(Ⅱ)若b=
7
、a+c=4,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,a=2,C=
π
4
,cos
B
2
=
2
5
5
,则三角形ABC的面积S=
8
7
8
7

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,A=60°,a=4
3
,b=4
2
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,A=60°,a=15,b=10则sinB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=4
3
sin
x
2
cos
x
2
-4sin2
x
2
+2.
(1)化简f(x)并求函数的周期
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案