精英家教网 > 高中数学 > 题目详情
在三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,若bcosC=(2a-c)cosB
(Ⅰ)求∠B的大小
(Ⅱ)若b=
7
、a+c=4,求三角形ABC的面积.
分析:(Ⅰ)根据正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=2R解出a、b、c代入到已知条件中,利用两角和的正弦函数的公式及三角形的内角和定理化简,得到cosB的值,然后利用特殊角的三角函数值求出B即可;
(Ⅱ)要求三角形的面积,由三角形的面积公式S=
1
2
acsinB知道就是要求ac的积及sinB,由前一问的cosA的值利用同角三角函数间的基本关系求出sinA,可根据余弦定理及b=
7
、a+c=4可得到ac的值,即可求出三角形的面积.
解答:解(Ⅰ)由已知及正弦定理可得sinBcosC=2sinAcosB-cosBsinC
∴2sinAcosB=sinBcosC+cosBsinC=sin(B+C)
又在三角形ABC中,sin(B+C)=sinA≠0
∴2sinAcosB=sinA,即cosB=
1
2
,得B=
π
3

(Ⅱ)∵b2=7=a2+c2-2accosB
∴7=a2+c2-ac
又∵(a+c)2=16=a2+c2+2ac
∴ac=3
S△ABC=
1
2
acsinB

S△ABC=
1
2
•3•
3
2
=
3
3
4
点评:此题考查学生灵活运用正弦、余弦定理解决数学问题的能力,以及会利用同角三角函数间的基本关系及两角和的正弦函数的公式化简求值,本题是一道综合题,要求学生掌握的知识要全面.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,A=120°,AB=5,BC=7,则
sinB
sinC
的值为(  )
A、
8
5
B、
5
8
C、
5
3
D、
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,∠A,∠B,∠C的对边分别为a、b、c且b2+c2=bc+a2
(1)求∠A;
(2)若a=
3
,求b2+c2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,已知2
AB
AC
=|
AB
|•|
AC
|
,设∠CAB=α,
(1)求角α的值;
(2)若cos(β-α)=
4
3
7
,其中β∈(
π
3
6
)
,求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,AB、BC、CA的长分别为c、a、b且b=4,c=5,∠A=45°,则
AB
CA
=
-10
2
-10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
3
sinx+
sin2x
sinx

(I)求f(x)的最大值,及当取最大值时x的取值集合.
(II)在三角形ABC中a、b、c分别是角A、B、C所对的边,对定义域内任意x有f(x)≤f(A),且b=1,c=2,求a的值.

查看答案和解析>>

同步练习册答案