精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ax3-$\frac{b}{x}$+2,若f(-2)=1,则f(2)=3.

分析 利用函数的奇偶性转化求解即可.

解答 解:函数f(x)=ax3-$\frac{b}{x}$+2,f(-2)=1,
则f(2)=8a-$\frac{b}{2}$+2=-(-8a+$\frac{b}{2}$+2)+4=-1+4=3.
故答案为:3.

点评 本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图所示,在△ABO中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD与BC相交于点M,设$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$.试用$\overrightarrow a$和$\overrightarrow b$表示$\overrightarrow{OM}$,则(  )
A.$\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$C.$\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$D.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A($\sqrt{3}$+1,0),B(0,2).若直线l:y=k(x-1)+1与线段AB相交,则直线l倾斜角α的取值范围是(  )
A.[$\frac{3π}{4}$,$\frac{5π}{6}$]B.[0,$\frac{3π}{4}$]C.[0,$\frac{3π}{4}$]∪[$\frac{5π}{6}$,π)D.[$\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a3+b3=(a+b)(a2-ab+b2),a,b∈R,则计算(lg2)3+3lg2•lg5+(lg5)3+$\frac{1}{2}$结果是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+2bx+5(b∈R).
(1)若b=2,试解不等式f(x)<10;
(2)若f(x)在区间[-4,-2]上的最小值为-11,试求b的值;
(3)若|f(x)-5|≤1在区间(0,1)上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若已知f(ex+$\frac{1}{e}$)=e2x+$\frac{1}{{e}^{2x}}$,关于x的不等式f(x)+m$\sqrt{f(x)+2}$≥0恒成立,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)[(5$\frac{4}{9}$)0.5+(0.008)-$\frac{2}{3}$÷(0.2)-1]÷0.06250.25
(2)[(1-log63)2+log62•log618]÷log64.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆x2+y2-x+2y=0的圆心坐标为$(\frac{1}{2},-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=$\frac{π}{3}$.
(Ⅰ) 证明:AP⊥BC;
(Ⅱ)求三棱锥P-ABC的体积.

查看答案和解析>>

同步练习册答案