精英家教网 > 高中数学 > 题目详情
等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C (如图2).

精英家教网

(1)求证:A1D丄平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为600?若存在,求出PB的长;若不存在,请说明理由.
(1)∵正△ABC的边长为3,且
AD
DB
=
CE
EA
=
1
2

精英家教网

∴AD=1,AE=2,
△ADE中,∠DAE=60°,由余弦定理,得
DE=
12+22-2×1×2×cos60°
=
3

∵AD2+DE2=4=AE2,∴AD⊥DE.
折叠后,仍有A1D⊥DE
∵二面角A1-DE-B成直二面角,∴平面A1DE⊥平面BCDE
又∵平面A1DE∩平面BCDE=DE,A1D?平面A1DE,A1D⊥DE
∴A1D丄平面BCED;
(2)假设在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°
如图,作PH⊥BD于点H,连接A1H、A1P
由(1)得A1D丄平面BCED,而PH?平面BCED
所以A1D丄PH
精英家教网

∵A1D、BD是平面A1BD内的相交直线,
∴PH⊥平面A1BD
由此可得∠PA1H是直线PA1与平面A1BD所成的角,即∠PA1H=60°
设PB=x(0≤x≤3),则BH=PBcos60°=
x
2
,PH=PBsin60°=
3
2
x
在Rt△PA1H中,∠PA1H=60°,所以A1H=
x
2

在Rt△DA1H中,A1D=1,DH=2-
1
2
x
由A1D2+DH2=A1H2,得12+(2-
1
2
x)2=(
1
2
x)2
解之得x=
5
2
,满足0≤x≤3符合题意
所以在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°,此时PB=
5
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等边三角形ABC的边长为4,M、N分别为AB、AC的中点,沿MN将△AMN折起,使得面AMN与面MNCB所处的二面角为30°,则四棱锥A-MNCB的体积为(  )
A、
3
2
B、
3
2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

等边三角形ABC的边长为1,
BC
=
a
CA
=
b
AB
=
c
,则
a
b
+
b
c
+
c
a
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等边三角形ABC的边长为a,那么三角形ABC的斜二测直观图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,等边三角形ABC的边长为6,在AB上截取AD,过D点作DF⊥AB,交AC于点F,过D点作DE⊥BC,交BC于点E.设AD=x,四边形DECF的面积为y.
(1)写出y关于x的函数解析式并指出函数的定义域;
(2)当AD等于多少时,y有最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等边三角形ABC的边长为2,⊙A的半径为1,PQ为⊙A的任意一条直径,则
BP
CQ
-
AP
CB
=
1
1

查看答案和解析>>

同步练习册答案