设
为等比数列,
为其前
项和,已知
.
(1)求
的通项公式;
(2)求数列
的前
项和
.
科目:高中数学 来源: 题型:解答题
已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的
,都有![]()
.
(1)若{bn }的首项为4,公比为2,求数列{an+bn}的前n项和Sn;
(2)若
,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它
项的和?若存在,请求出该项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log3an+1,Tn是数列
的前n项和, 求T2 013的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
数列
的首项为
(
),前
项和为
,且
(
).设
,
(
).
(1)求数列
的通项公式;
(2)当
时,若对任意
,
恒成立,求
的取值范围;
(3)当
时,试求三个正数
,
,
的一组值,使得
为等比数列,且
,
,
成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设无穷等比数列
的公比为q,且
,
表示不超过实数
的最大整数(如
),记
,数列
的前
项和为
,数列
的前
项和为
.
(Ⅰ)若
,求
;
(Ⅱ)证明:
(
)的充分必要条件为
;
(Ⅲ)若对于任意不超过
的正整数n,都有
,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com