【题目】某同学解答一道三角函数题:“已知函数
,且
.
(Ⅰ)求
的值;
(Ⅱ)求函数
在区间
上的最大值及相应x的值.”
该同学解答过程如下:
解答:(Ⅰ)因为
,所以
.因为
,
所以
.
(Ⅱ)因为
,所以
.令
,则
.
画出函数
在
上的图象,
由图象可知,当
,即
时,函数
的最大值为
.
![]()
下表列出了某些数学知识:
任意角的概念 | 任意角的正弦、余弦、正切的定义 |
弧度制的概念 |
|
弧度与角度的互化 | 函数 |
三角函数的周期性 | 正弦函数、余弦函数在区间 |
同角三角函数的基本关系式 | 正切函数在区间 |
两角差的余弦公式 | 函数 |
两角差的正弦、正切公式 | 参数A, |
两角和的正弦、余弦、正切公式 | 二倍角的正弦、余弦、正切公式 |
请写出该同学在解答过程中用到了此表中的哪些数学知识.
科目:高中数学 来源: 题型:
【题目】已知
的直角顶点
在
轴上,点
,
为斜边
的中点,且
平行于
轴.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
与
的另一个交点为
.以
为直径的圆交
轴于
、
,记此圆的圆心为
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
,
).
(1)当
时,求函数
在
点处的切线方程;
(2)若函数
在区间
上为增函数,求实数
的取值范围;
(3)求证:对于任意大于
的正整数
,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中或一等奖的次数为
,求
的分布列、数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学解答一道解析几何题:“已知直线l:
与x轴的交点为A,圆O:
经过点A.
(Ⅰ)求r的值;
(Ⅱ)若点B为圆O上一点,且直线AB垂直于直线l,求
.”
该同学解答过程如下:
解答:(Ⅰ)令
,即
,解得
,所以点A的坐标为
.
因为圆O:
经过点A,所以
.
(Ⅱ)因为
.所以直线AB的斜率为
.
所以直线AB的方程为
,即
.
代入
消去y整理得
,
解得
,
.当
时,
.所以点B的坐标为
.
所以
.
指出上述解答过程中的错误之处,并写出正确的解答过程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.
![]()
(1)由频率分布直方图计算跑步千米数不小于70千米的人数;
(2)已知跑步千米数在
的人数是跑步千米数在
的
,跑步千米数在
的人数是跑步千米数在
的
,现在从跑步千米数在
的跑友中抽取3名代表发言,用
表示所选的3人中跑步千米数在
的人数,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com