12£®Èçͼ£¬ÍÖÔ²E£º$\frac{x^2}{4}+\frac{y^2}{b^2}=1£¨0£¼b£¼2£©$£¬µãP£¨0£¬1£©ÔÚ¶ÌÖáCDÉÏ£¬ÇÒ$\overrightarrow{PC}•\overrightarrow{PD}=-2$
£¨¢ñ£© ÇóÍÖÔ²EµÄ·½³Ì¼°ÀëÐÄÂÊ£»
£¨¢ò£© ÉèOÎª×ø±êÔ­µã£¬¹ýµãPµÄ¶¯Ö±ÏßÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£®ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ$\overrightarrow{OA}•\overrightarrow{OB}+¦Ë\overrightarrow{PA}•\overrightarrow{PB}$Ϊ¶¨Öµ£¿Èô´æÔÚ£¬Çó¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃµãC£¬DµÄ×ø±ê·Ö±ðΪ£¨0£¬-b£©£¬£¨0£¬b£©£®½áºÏ$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2ÁÐʽÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇ󣬽øÒ»²½Çó³öc¿ÉµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+1£¬A£¬BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃA£¬Bºá×ø±êµÄºÍÓë»ý$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$£¬¿ÉÖªµ±¦Ë=2ʱ£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7Ϊ¶¨Öµ£®µ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬Ö±ÏßAB¼´ÎªÖ±ÏßCD£¬ÈÔÓÐ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7£¬¹Ê´æÔÚ³£Êý¦Ë=2£¬Ê¹µÃ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$Ϊ¶¨Öµ-7£®

½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª£¬µãC£¬DµÄ×ø±ê·Ö±ðΪ£¨0£¬-b£©£¬£¨0£¬b£©£®
ÓÖµãPµÄ×ø±êΪ£¨0£¬1£©£¬ÇÒ$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2£¬¼´1-b2=-2£¬
½âµÃb2=3£®
¡àÍÖÔ²E·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
¡ßc=$\sqrt{{a}^{2}-{b}^{2}}$=1£¬¡àÀëÐÄÂÊe=$\frac{1}{2}$£»
£¨¢ò£©µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+1£¬A£¬BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=kx+1\end{array}\right.$£¬µÃ£¨4k2+3£©x2+8kx-8=0£®
ÆäÅбðʽ¡÷£¾0£¬
x1+x2=$\frac{-8k}{{4{k^2}+3}}$£¬x1x2=$\frac{-8}{{4{k^2}+3}}$£®
´Ó¶ø£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=x1x2+y1y2+¦Ë[x1x2+£¨y1-1£©£¨y2-1£©]
=£¨1+¦Ë£©£¨1+k2£©x1x2+k£¨x1+x2£©+1
=$\frac{{-8£¨{1+¦Ë}£©£¨{1+{k^2}}£©-4{k^2}+3}}{{4{k^2}+3}}$=$\frac{4-2¦Ë}{{4{k^2}+3}}$-2¦Ë-3£¬
µ±¦Ë=2ʱ£¬$\frac{4-2¦Ë}{{4{k^2}+3}}$-2¦Ë-3=-7£¬
¼´$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7Ϊ¶¨Öµ£®
µ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬Ö±ÏßAB¼´ÎªÖ±ÏßCD£¬
´Ëʱ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7£¬
¹Ê´æÔÚ³£Êý¦Ë=2£¬Ê¹µÃ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$Ϊ¶¨Öµ-7£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿ÔÚÇó½âÔ²×¶ÇúÏßÎÊÌâÖеÄÓ¦Óã¬ÌåÏÖÁË¡°Éè¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®»¯¼ò£º
£¨1£©$\frac{si{n}^{2}35¡ã-\frac{1}{2}}{cos10¡ãcos80¡ã}$        
£¨2£©£¨$\frac{1}{tan\frac{¦Á}{2}}$-tan$\frac{¦Á}{2}$£©•$\frac{1-cos2¦Á}{sin2¦Á}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y+1¡Ý0}\\{x-2y¡Ü0}\\{x+2y-2¡Ü0}\end{array}\right.$£¬Ôòz=x-yµÄ×îСֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÃüÌâp£º?x¡Ê[0£¬2¦Ð]£¬sinx¡Ü1£¬Ôò£¨¡¡¡¡£©
A£®©Vp£º?x¡Ê[0£¬2¦Ð]£¬sinx¡Ý1B£®©Vp£º?x¡Ê[-2¦Ð£¬0]£¬sinx£¾1
C£®©Vp£º?x¡Ê[0£¬2¦Ð]£¬sinx£¾1D£®©Vp£º?x¡Ê[-2¦Ð£¬0]£¬sinx£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚµÈÑüÖ±½Ç¡÷ABCÖУ¬AC=BC£¬DÔÚAB±ßÉÏÇÒÂú×㣺$\overrightarrow{CD}=t\overrightarrow{CA}+£¨1-t£©\overrightarrow{CB}$£¬Èô¡ÏACD=60¡ã£¬ÔòtµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}-1}}{2}$B£®$\sqrt{3}-1$C£®$\frac{{\sqrt{3}-\sqrt{2}}}{2}$D£®$\frac{{\sqrt{3}+1}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÊýÁÐ{an}Âú×ãa1=1£¬nan+1=£¨n+1£©an+£¨n+1£©n£¨n¡ÊN+£©£¬
£¨1£©Áîcn=$\frac{a_n}{n}$£¬Ö¤Ã÷{cn}ÊǵȲîÊýÁУ¬²¢Çóan£»
£¨2£©Áîbn=$\frac{1}{{\sqrt{a_n}\sqrt{{a_{n+1}}}}}$£¬ÇóÊýÁÐ{bn}ǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èôcos¦Á=$\frac{1}{5}$£¬ÇÒ¦Á¡Ê£¨0£¬¦Ð£©£¬Ôòcos$\frac{¦Á}{2}$=$\frac{\sqrt{15}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýy=xne-x£¬ÔòÆäµ¼Êýy'=£¨¡¡¡¡£©
A£®nxn-1e-xB£®xne-xC£®2xne-xD£®£¨n-x£©xn-1e-x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÖ±Ïßl£º£¨m+1£©x+£¨2m-1£©y+m-2=0£¬ÔòÖ±Ïߺã¹ý¶¨µã£¨1£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸