·ÖÎö £¨¢ñ£©ÓÉÒÑÖª¿ÉµÃµãC£¬DµÄ×ø±ê·Ö±ðΪ£¨0£¬-b£©£¬£¨0£¬b£©£®½áºÏ$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2ÁÐʽÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇ󣬽øÒ»²½Çó³öc¿ÉµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+1£¬A£¬BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃA£¬Bºá×ø±êµÄºÍÓë»ý$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$£¬¿ÉÖªµ±¦Ë=2ʱ£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7Ϊ¶¨Öµ£®µ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬Ö±ÏßAB¼´ÎªÖ±ÏßCD£¬ÈÔÓÐ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7£¬¹Ê´æÔÚ³£Êý¦Ë=2£¬Ê¹µÃ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$Ϊ¶¨Öµ-7£®
½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖª£¬µãC£¬DµÄ×ø±ê·Ö±ðΪ£¨0£¬-b£©£¬£¨0£¬b£©£®
ÓÖµãPµÄ×ø±êΪ£¨0£¬1£©£¬ÇÒ$\overrightarrow{PC}$•$\overrightarrow{PD}$=-2£¬¼´1-b2=-2£¬
½âµÃb2=3£®
¡àÍÖÔ²E·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
¡ßc=$\sqrt{{a}^{2}-{b}^{2}}$=1£¬¡àÀëÐÄÂÊe=$\frac{1}{2}$£»
£¨¢ò£©µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+1£¬A£¬BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£®
ÁªÁ¢$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=kx+1\end{array}\right.$£¬µÃ£¨4k2+3£©x2+8kx-8=0£®
ÆäÅбðʽ¡÷£¾0£¬
x1+x2=$\frac{-8k}{{4{k^2}+3}}$£¬x1x2=$\frac{-8}{{4{k^2}+3}}$£®
´Ó¶ø£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=x1x2+y1y2+¦Ë[x1x2+£¨y1-1£©£¨y2-1£©]
=£¨1+¦Ë£©£¨1+k2£©x1x2+k£¨x1+x2£©+1
=$\frac{{-8£¨{1+¦Ë}£©£¨{1+{k^2}}£©-4{k^2}+3}}{{4{k^2}+3}}$=$\frac{4-2¦Ë}{{4{k^2}+3}}$-2¦Ë-3£¬
µ±¦Ë=2ʱ£¬$\frac{4-2¦Ë}{{4{k^2}+3}}$-2¦Ë-3=-7£¬
¼´$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=-7Ϊ¶¨Öµ£®
µ±Ö±ÏßABбÂʲ»´æÔÚʱ£¬Ö±ÏßAB¼´ÎªÖ±ÏßCD£¬
´Ëʱ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{OC}$•$\overrightarrow{OD}$+2$\overrightarrow{PC}$•$\overrightarrow{PD}$=-3-4=-7£¬
¹Ê´æÔÚ³£Êý¦Ë=2£¬Ê¹µÃ$\overrightarrow{OA}$•$\overrightarrow{OB}$+¦Ë$\overrightarrow{PA}$•$\overrightarrow{PB}$Ϊ¶¨Öµ-7£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÆ½ÃæÏòÁ¿ÔÚÇó½âÔ²×¶ÇúÏßÎÊÌâÖеÄÓ¦Óã¬ÌåÏÖÁË¡°Éè¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ©Vp£º?x¡Ê[0£¬2¦Ð]£¬sinx¡Ý1 | B£® | ©Vp£º?x¡Ê[-2¦Ð£¬0]£¬sinx£¾1 | ||
| C£® | ©Vp£º?x¡Ê[0£¬2¦Ð]£¬sinx£¾1 | D£® | ©Vp£º?x¡Ê[-2¦Ð£¬0]£¬sinx£¾1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{3}-1}}{2}$ | B£® | $\sqrt{3}-1$ | C£® | $\frac{{\sqrt{3}-\sqrt{2}}}{2}$ | D£® | $\frac{{\sqrt{3}+1}}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | nxn-1e-x | B£® | xne-x | C£® | 2xne-x | D£® | £¨n-x£©xn-1e-x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com