精英家教网 > 高中数学 > 题目详情
(2012•石景山区一模)甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为
1
3
,乙每次投中的概率为
1
2
,每人分别进行三次投篮.
(Ⅰ)记甲投中的次数为ξ,求ξ的分布列及数学期望Eξ;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投进2次的概率.
分析:(Ⅰ)确定ξ的可能取值,求出相应的概率,即可得到ξ的分布列及数学期望Eξ;
(Ⅱ)利用对立事件,可得乙至多投中2次的概率;
(Ⅲ)设乙比甲多投中2次为事件A,乙恰投中2次且甲恰投中0次为事件B1,乙恰投中3次且甲恰投中1次为事件B2
则A=B1∪B2,利用互斥事件的概率公式,即可求得结论.
解答:解:(Ⅰ)ξ的可能取值为:0,1,2,3.                         …(1分)
P(ξ=0)=
C
0
3
(
2
3
)3=
8
27
P(ξ=1)=
C
1
3
(
1
3
)(
2
3
)2=
4
9

P(ξ=2)=
C
2
3
(
1
3
)2(
2
3
) =
2
9
P(ξ=3)=
C
3
3
(
1
3
)3=
1
27

ξ的分布列如下表:
ξ 0 1 2 3
P
8
27
4
9
2
9
1
27
…(4分)
Eξ=0×
8
27
+1×
4
9
+2×
2
9
+3×
1
27
=1
.                …(5分)
(Ⅱ)利用对立事件,可得乙至多投中2次的概率为1-
C
3
3
(
1
2
)3=
7
8
.              …(8分)
(Ⅲ)设乙比甲多投中2次为事件A,乙恰投中2次且甲恰投中0次为事件B1,乙恰投中3次且甲恰投中1次为事件B2
则A=B1∪B2,B1,B2为互斥事件.                     …(10分)
所以P(A)=P(B1)+P(B2)=
8
27
×
3
8
+
4
9
×
1
8
=
1
6

所以乙恰好比甲多投中2次的概率为
1
6
.                …(13分)
点评:本题考查离散型随机变量的分布列与数学期望,解题的关键是确定变量的取值,求出相应的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•石景山区一模)在复平面内,复数
2-i
1+i
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=
2x
+f(x)
在[1,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)圆
x=2cosθ
y=2sinθ+2
的圆心坐标是(  )

查看答案和解析>>

同步练习册答案