精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,∠BAC=10°,∠ACB=30°,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1 , 则在所有旋转过程中,直线B1C与直线AC1所成角的取值范围为

【答案】[10°,50°]
【解析】解:∵在△ABC中,∠BAC=10°,∠ACB=30°,
将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1
如图,平移CB1到A处,B1C绕AC旋转,
∴∠B1CA=30°,∠B1AC=150°,
AC1绕AB旋转,∴0°≤∠C1AC≤2∠CAB,
∴0≤∠C1AC≤20°,
设直线B1C与直线AC1所成角为α,
则∠B1AC﹣∠C1AC≤α≤∠B1AC+∠C1AC,
∵130°≤∠B1AC﹣∠C1AC≤150°,
150°≤∠B1AC+∠C1AC≤170°,
∴10°≤α≤50°或130°≤α≤170°(舍).
所以答案是:[10°,50°].

【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“女大学生就业难”究竟有多难?其难在何处?女生在求职中是否收到了不公平对待?通过对某大学应届毕业生的调查与实证分析试对下列问题提出解答.为调查某地区大学应届毕业生的调查,用简单随机抽样方法从该地区抽取了500为大学生做问卷调查,结果如下:

性别
是否公平

公平

40

30

不公平

160

270


(1)估计该地区大学生中,求职中收到了公平对待的学生的概率;
(2)能否有99%的把握认为该地区的大学生求职中受到了不公平对待与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的大学生中,求职中是否受到了不公平对待学生的比例?说明理由.
附:K2=

P(K2≥k)

0.000

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ)+cos(2x+φ)的图象与函数 的图象关于y轴对称,则φ的值可以为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 =1(a,b>0)的右焦点F作一条渐近线的垂线,垂足为P,线段OP的垂直平分线交y轴于点Q(其中O为坐标原点).若△OFP的面积是△OPQ的面积的4倍,则该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,已知a1= ,an+1=
(1)证明:an<an+1
(2)证明:当n≥2时,( <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意正整数n,设an是方程x2+ =1的正根.求证:
(1)an+1>an
(2) + +…+ <1+ + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.

(1)求椭圆的标准方程;
(2)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0 , 0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域为R的偶函数y=f(x)满足f(x+2)+f(x)=0,且当x∈[0,2]时,f(x)=2﹣x2 , 则方程f(x)=2sinx在[﹣3π,3π]内根的个数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是( )
①甲抛出正面次数比乙抛出正面次数多;
②甲抛出反面次数比乙抛出正面次数少;
③甲抛出反面次数比甲抛出正面次数多;
④乙抛出正面次数与乙抛出反面次数一样多.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步练习册答案