精英家教网 > 高中数学 > 题目详情

如果双曲线的两个焦点分别为F1(-3,0),F2(3,0),一条渐近线方程为y=x,那么它的两条准线间的距离是(  )

(A)6 (B)4 (C)2 (D)1

 

C

【解析】c=3,=,c2=a2+b2,

解得a2=3,=1.

∴两条准线间的距离是2×=2×1=2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:解答题

P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.

(1)求双曲线的离心率.

(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:选择题

过抛物线y=2x2的焦点的直线与抛物线交于A(x1,y1),B(x2,y2),x1x2=(  )

(A)-2 (B)- (C)-4 (D)-

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:解答题

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,C的圆心轨迹方程为L,L上的点与点M(x,y)的距离的最小值为m,F(0,1)与点M(x,y)的距离为n.

(1)求圆C的圆心轨迹L的方程.

(2)求满足条件m=n的点M的轨迹Q的方程.

(3)(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:选择题

已知点P在定圆O的圆内或圆周上,动圆C过点P与定圆O相切,则动圆C的圆心轨迹可能是(  )

(A)圆或椭圆或双曲线

(B)两条射线或圆或抛物线

(C)两条射线或圆或椭圆

(D)椭圆或双曲线或抛物线

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:填空题

已知定点A(1,1),B(3,3),动点Px轴上,|PA|+|PB|的最小值是    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:选择题

若直线l1:y=kx+k+2l2:y=-2x+4的交点在第一象限,则实数k的取值范围是(  )

(A)k>- (B)k<2 (C)-<k<2 (D)k<-k>2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十第三章第四节练习卷(解析版) 题型:选择题

已知函数f(x)=sin(ωx+)(xR,ω>0)的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象(  )

(A)向左平移个单位长度

(B)向右平移个单位长度

(C)向左平移个单位长度

(D)向右平移个单位长度

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十八第四章第四节练习卷(解析版) 题型:选择题

C:x2+y2=1,直线l:y=kx+2,直线l与圆C交于A,B,|+|<|-|(其中O为坐标原点),k的取值范围是(  )

(A)(0,) (B)(-,)

(C)(,+)(D)(-,-)(,+)

 

查看答案和解析>>

同步练习册答案