精英家教网 > 高中数学 > 题目详情
判断下列方程是否表示椭圆,若是,求出a,b的值
x2
2
+
y2
2
=1②
x2
4
+
y2
2
=1③
x2
4
-
y2
2
=1④4y2+9x2=36.
考点:椭圆的标准方程,椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:利用椭圆的概念和性质求解.
解答: 解:①
x2
2
+
y2
2
=1是圆,而不是椭圆.
x2
4
+
y2
2
=1是椭圆,
且a2=4,b2=2,
解得a=2,b=
2

x2
4
-
y2
2
=1是双曲线,而不是椭圆.
④由4y2+9x2=36,得
x2
9
+
y2
4
=1

∴4y2+9x2=36是椭圆,
且a=3,b=2.
点评:本题考查椭圆的判断,是基础题,解题时要注意椭圆的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:由五个直角边为
2
的等腰直角三角形拼成如图所示的平面凹五边形ACDEF,沿AD折起,使平面ADEF⊥平面ACD.

(1)求证:FB⊥AD;
(2)求二面角C-EF-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=3an+1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

当a为何值时,直线y=x与对数函数y=logax的图象相切,求切点坐标及切点处的法线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-(1-2sin2x)(sin4x-cos4x).
(1)求f(x)的值域;
(2)若x∈[0,π],求方程f(x)=1的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)和g(x)的定义域为R,且f(x)为偶函数,g(x)为奇函数,f(x)+g(x)=
1
x2-x+1
,则F(x)=
f(x)
g(x)
在定义域内的增区间为(  )
A、(-∞,-1)
B、(1,+∞)
C、(-∞,-1)和(1,+∞)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2010ex,则f′(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正△ABC的边长为1,那么△ABC的直观图△A′B′C′的面积为(  )
A、
6
16
B、
6
4
C、
6
2
D、
6
32

查看答案和解析>>

同步练习册答案