精英家教网 > 高中数学 > 题目详情

已知数列{an}是公比大于1的等比数列,Sn为数列{an}的前n项和,S3=7,且a1+3,3a2,a3+4成等差数列.
(1)求数列{an}的通项;
(2)令bn=nan,求数列{bn}的前n项和Tn

解:(1)
解得a1=1,q=2
∴an=2n-1
(2)Tn=1+2×2+3×22+…+n×2n-1
2Tn=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n
两市相减得-Tn=1+2+22+…+2n-1-n×2n
∴Tn=(n-1)×2n+1
分析:(1)利用已知条件,列出关于等比数列的首项与公比的方程组,求出首项与公比,利用等比数列的通项公式求出通项.
(2)由于bn是有一等差数列与等比数列的积构成的数列,利用错位相减的方法求出前n项和.
点评:求数列的前n项和,一般先求出通项,根据通项的特点选择合适的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么这个数列的前21项和S21的值为
52
52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案