精英家教网 > 高中数学 > 题目详情
2.平面向量$\vec a$与$\vec b$的夹角为$\frac{π}{3}$,$\vec a=(2,0),|{\vec b}|=1$,则$|{\vec a+2\vec b}|$等于(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.4D.$\sqrt{10}$

分析 利用已知条件,通过平方关系,求解即可.

解答 解:平面向量$\vec a$与$\vec b$的夹角为$\frac{π}{3}$,$\vec a=(2,0),|{\vec b}|=1$,
则$|{\vec a+2\vec b}|$=$\sqrt{{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+4\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{4+4+4×2×1×\frac{1}{2}}$=2$\sqrt{3}$.
故选:A.

点评 本题考查平面向量的数量积以及向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,a1=1,且n•an+1=(n+2)Sn,n∈N*
(1)求证:数列$\left\{{\frac{S_n}{n}}\right\}$为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若a>0,b>2,且a+b=3,则使得$\frac{4}{a}$+$\frac{1}{b-2}$取得最小值的实数a=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2C-3cos(A+B)=1
(1)求角C的大小;
(2)若c=$\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在正三棱柱A1B1C1-ABC中,AB=4,${A_1}A=4\sqrt{3}$,D,F分别是棱AB,AA1的中点,E为棱AC上的动点,则△DEF周长的最小值为$2\sqrt{7}+4$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2mx+3m+4,
(1)若f(x)在(-∞,1]上单调递减,求m的取值范围;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC的外接圆的圆心为O,半径为1,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow 0$且$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}|$,则向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=log2x在[1,a](a>1)上的最大值为2,则a=(  )
A.$\frac{3}{2}$B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,动圆经过点M(a-2,0),N(a+2,0),P(0,-2),其中a∈R.
(1)求动圆圆心的轨迹E的方程;
(2)过点P作直线l交轨迹E于不同的两点A、B,直线OA与直线OB分别交直线y=2于两点C、D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

查看答案和解析>>

同步练习册答案