精英家教网 > 高中数学 > 题目详情
15.(1)已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值.
(2)求函数定义域:$y=\sqrt{-2{{cos}^2}x+3cosx-1}+lg(36-{x^2})$.

分析 (1)利用“弦化切”的思想,sin2β-3sinβcosβ+4cos2β=$\frac{si{n}^{2}β-3sinβcosβ+4co{s}^{2}β}{si{n}^{2}β+co{s}^{2}β}$,同时除以cosβ,可转化为tanβ,可得答案.
(2)根据函数有意义,被开方数≥0,对数的真数>0,求解即可.

解答 解:(1)由sin2β-3sinβcosβ+4cos2β=$\frac{si{n}^{2}β-3sinβcosβ+4co{s}^{2}β}{si{n}^{2}β+co{s}^{2}β}$=$\frac{ta{n}^{2}β-tanβ+4}{ta{n}^{2}β+1}$
∵$tanβ=\frac{1}{2}$,
∴sin2β-3sinβcosβ+4cos2β=$\frac{\frac{1}{4}-\frac{1}{2}+4}{\frac{1}{4}+1}$=3.
(2)函数$y=\sqrt{-2{{cos}^2}x+3cosx-1}+lg(36-{x^2})$.
其定义域满足:$\left\{\begin{array}{l}{2co{s}^{2}x-3cosx+1≤0}\\{36-{x}^{2}>0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{\frac{1}{2}≤cosx≤1}\\{-6<x<6}\end{array}\right.$,
从而有:$\left\{\begin{array}{l}{2πk≤x≤\frac{π}{3}+2kπ,k∈Z}\\{-6<x<6}\end{array}\right.$,
∴函数定义域为(-6,$-\frac{5π}{3}$]∪[0,$\frac{π}{3}$]

点评 本题考查了“弦化切”及同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某几何体的三视图如图所示,则此几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)在x=1处的导数为1,则$\lim_{x→∞}\frac{f(1-x)-f(1+x)}{3x}$的值为(  )
A.3B.-$\frac{3}{2}$C.$\frac{1}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第六个叠放的图形中,小正方体木块总数就是(  )
A.25B.66C.91D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设Sn是等比数列{an}的前n项和为S4=4S2,则$\frac{{a}_{3}{a}_{8}}{{{a}_{5}}^{2}}$ 的值为(  )
A.-2或-1B.1或2C.±$\sqrt{3}$或-1D.±1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自极点O任意作一条射线与直线ρcosθ=3相交于点M,在射线OM上取点P,使得|OM|•|OP|=12,求动点P的极坐标方程,并把它化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线3x-4y-9=0被圆(x-3)2+y2=9截得的弦长为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在高三某次数学测试中,40名优秀学生的成绩如图所示:
若将成绩由低到高编为1~40号,再用系统抽样的方法从中抽取8人,则其中成绩在区间[123,134]上的学生人数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|3x<16,x∈N},B={x|x2-5x+4<0},A∩(∁RB)的真子集的个数为(  )
A.1B.3C.4D.7

查看答案和解析>>

同步练习册答案