精英家教网 > 高中数学 > 题目详情
3.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第六个叠放的图形中,小正方体木块总数就是(  )
A.25B.66C.91D.120

分析 先分别观察给出正方体的个数为:1,1+5,1+5+9,…总结一般性的规律,将一般性的数列转化为特殊的数列再求解.

解答 解:分别观察正方体的个数为:1,1+5,1+5+9,…
归纳可知,第n个叠放图形中共有n层,构成了以1为首项,以4为公差的等差数列
所以s6=6+$\frac{6×5}{2}×4$=66
故选B.

点评 本题主要考查归纳推理,其基本思路是先分析具体,观察,总结其内在联系,得到一般性的结论,若求解的项数较少,可一直推理出结果,若项数较多,则要得到一般求解方法,再求具体问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex,g(x)=$\frac{a}{2}x+b$(a,b∈R),
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$.求h(x)在[0,1]上的最大值φ(a)的表达式;
(2)若a=4时,方程f(x)=g(x)在[0,2]上恰有两个相异实根,求实根b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下列不等式:$\sqrt{1•2}<\frac{3}{2}$,$\sqrt{1•2}+\sqrt{2•3}$<4,$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}<\frac{15}{2}$,
$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+\sqrt{4•5}$<12,…
照此规律,第n个不等式为$\sqrt{1•2}+\sqrt{2•3}+\sqrt{3•4}+…+\sqrt{n(n+1)}<\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.满足条件AB=2,AC=$\sqrt{3}$BC的三角形ABC面积的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,某海上缉私小分队驾驶缉私艇以40km/h的速度由A出出发,沿北偏东60°方向进行海面巡逻,当航行半小时到达B处时,发现北偏西45°方向有一艘船C,若船C位于A的北偏东30°方向上,则缉私艇所在的B处与船C的距离是(  )km.
A.5($\sqrt{6}$+$\sqrt{2}$)B.5($\sqrt{6}$-$\sqrt{2}$)C.10($\sqrt{6}$+$\sqrt{2}$)D.10($\sqrt{6}$-$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值.
(2)求函数定义域:$y=\sqrt{-2{{cos}^2}x+3cosx-1}+lg(36-{x^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列值为2的积分是(  )
A.$\int_0^5{({2x-4})dx}$B.$\int_0^π{cosxdx}$C.$\int_1^3{\frac{1}{x}dx}$D.$\int_0^π{sinxdx}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a=($\frac{1}{2}$)${\;}^{\frac{1}{5}}$,b=($\frac{1}{5}$)${\;}^{-\frac{1}{2}}$,c=log${\;}_{\frac{1}{5}}$10,则a,b,c大小关系为(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

同步练习册答案