精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的四个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),
g(n)-g(m)n-m
>0
恒成立;
②函数g(x)是奇函数的充要条件是b=0;
③若a≥1,b<0,则方程g(x)=0必有3个实数根;
④?a∈R,g(x)的导函数g′(x)有两个零点;
其中所有正确结论的序号是
 
分析:①对于[-c,c]内的任意实数m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立,可根据函数的单调性来进行判断;
②若b=0,则函数g(x)是奇函数,由函数解析式的形式判断即可;
③若a≥1,b<0,则方程g(x)=0必有3个实数根,由函数的图象及参数的取值范围进行判断;
④?a∈R,则由g(x)的极值点的个数,判断导函数g'(x)有多少个零点.
解答:解:①对于[-c,c]内的任意实数m,n(m<n),
g(n)-g(m)
n-m
>0
恒成立,由函数的图象可以看出,函数在[-1,1]内不是单调增函数,故命题不正确;
②若b=0,则函数g(x)是奇函数,此命题正确,b=0时,g(x)=af(x)是一个奇函数;
③若a≥1,b<0,则方程g(x)=0必有3个实数根,本题中没有具体限定b的范围,故无法判断g(x)=0有几个根;
④a=0时,g(x)=b,g′(x)=0,结论不成立.
综上②正确
故答案为②.
点评:本题考查奇偶性与单调性的综合,求解本题的关键是对函数的图象变换的方式与系数的关系以及与所加的常数的关系的理解与运用.一般一个一个奇函数乘上一个数仍是奇函数,一个增函数乘上一个正数仍是增函数,一个函数加上一个常数,不改变其单调性,由这些结论即可保证正确做对本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,f′(x)是函数f(x)的导函数,且y=f(x+1)是奇函数,那么下列结论中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函f(x)(数的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
④f(x)+f(-x)=0
其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武昌区模拟)已知函数f(x)(x∈R)的一段图象如图所示,f′(x)是函数f(x)的导函数,且y=f(x+1)是奇函数,给出以下结论:
①f(1-x)+f(1+x)=0;
②f′(x)(x-1)≥0;
③f(x)(x-1)≥0;
lim
x→0
f(x)=f(0)

其中一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,f(x)是定义在区间[-c,c](c>0)上的奇函数,令g(x)=af(x)+b,并有关于函数g(x)的五个论断:
①若a>0,对于[-1,1]内的任意实数m,n(m<n),
g(n)-g(m)n-m
>0
恒成立;
②若a=-1,-2<b<0,则方程g(x)=0有大于2的实根
③函数g(x)的极大值为2a+b,极小值为-2a+b;
④若a≥1,b<0,则方程g(x)=0必有3个实数根;
⑤?a∈R,g(x)的导函数g'(x)有两个零点.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案