已知函数f(x)=loga
(a>1且b>0).
(1)求f(x)的定义域;
(2)判断函数的奇偶性;
(3)判断f(x)的单调性,并用定义证明.
|
解:(1)由 ∴函数f(x)的定义域为(-∞,-b)∪(b,+∞); (2)由于f(-x)=loga( (3)设x1、x2是区间(b,+∞)上任意两个值,且x1<x2. 则 ∵b>0,x1-x2<0,x2-b>0,x1-b>0, ∴ 又a>1时,函数y=logax是增函数, ∴loga 即f(x2)<f(x1). ∴函数f(x)在区间(b,+∞)上是减函数. 同理,可证f(x)在(-∞,-b)上也是减函数. 说明:f(x)在两个区间上具有相同的单调性,不一定在两个区间的并集上具有相同的单调性,因此不能写成f(x)在(-∞,-b)∪(b,+∞)上是减函数. |
|
本题考查定义域、单调性的求法及判断方法,注意要利用定义求解. |
科目:高中数学 来源: 题型:
已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).
(1)求函数y=g(x)-x在[0,1]上的最小值;
(2)当a≥
时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.
(3)当x≥0时,g(x)≥-
f(x)+
恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届湖北省大治二中高二3月联考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3+x-16,
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
查看答案和解析>>
科目:高中数学 来源:2012年陕西省高二下期第一次月考理科数学试卷(解析版) 题型:解答题
已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x-y+1=0,当x=时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题
已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com